
© 2018 IBM Corporation

™

© 2018 IBM Corporation 1

Test Driven Development
Best practices applied to IBM i

with the assistance of tooling

Presentation by

Barbara Morris – RPG compiler lead

Edmund Reinhardt – RDi lead

© 2018 IBM Corporation

™

2

The Vision

• IBM i developers are able to confidently change their code

– Because their code is tested 100%

– They can achieve this through Test Driven Development

– They can prove this coverage level

– They can refactor the code confidently to make it readable, well-structured and taking advantage of the

latest technology.

– As a result the platform is not known for old, hard to modify code,

• Rather as the most reliable, cost-effective platform for business

© 2018 IBM Corporation

™

3

TDD is a way of doing development. The "test" aspect is Unit Test, not
Acceptance Test:

Development is done using this loop:

Loop

• Write a failing test

• Write the minimum amount of code to make the test pass

• If you want to add a bit of extra code … don't do it!

• Just add a test to your test list

• Run all existing tests until they all pass

• Refactor if necessary

End-loop

Definition of TDD (Test Driven Development)

© 2018 IBM Corporation

™

4

TDD at a glance

© 2018 IBM Corporation

™

5

TDD process flowchart

(Re) write
a test

Test
fails? Write

production
code Run all

tests
Clean up

code

Test passes

Test fails

Tests pass

Test(s) fail

R
ep

ea
t

© 2018 IBM Corporation

™

6

Rules for TDD

• Maintain a test list with all the test scenarios you know you will need. You will
continually add to this list as you develop.

• Never write a bit of extra code because you know it will be needed

• If you think you might forget to write the code, add an item to your test list

© 2018 IBM Corporation

™

7

What TDD is not

TDD does not mean creating all the testcases for a feature before you start
developing the feature.

(Well, some people misuse the term to mean that …)

But it doesn't matter whether some people use the term to mean writing
acceptance tests before development starts.

If you are doing TDD for development, you are using the loop we saw at the
beginning:

© 2018 IBM Corporation

™

8

TDD is hard

TDD requires a lot of self-discipline

It is especially hard to start it in the middle of developing a new feature

But it is possible, and it is worth the effort

© 2018 IBM Corporation

™

9

What is so great about TDD?

If you use TDD properly

• If you write test scenarios that advance your code in tiny increments

• If you never write extra code

• If you make your unit tests permanent

Then you never have any code that is not tested

© 2018 IBM Corporation

™

10

But it takes so long, isn't it a waste of time?

It's true, development using TDD can seem very slow

But consider the "Shift Left" principle. From Wikipedia

"Shift left testing is an approach to software testing and system testing in which
testing is performed earlier in the lifecycle (i.e., moved left on the project
timeline)."

The earlier a defect is found, the cheaper it is to fix.

• The cheapest defect is one that is found by the developer while coding.

• The most expensive defect (real $$$) is one that is found by an end user.

© 2018 IBM Corporation

™

11

Exponential growth in cost, the later a bug is caught

https://dzone.com/articles/shift-left-your-safety-critical-software-testing-w

https://dzone.com/articles/shift-left-your-safety-critical-software-testing-w

© 2018 IBM Corporation

™

12

40% reduction in overall cost by fixing same # of defects earlier

https://dzone.com/articles/shift-left-your-safety-critical-software-testing-w

https://dzone.com/articles/shift-left-your-safety-critical-software-testing-w

© 2018 IBM Corporation

™

13

Example: Write a procedure to center a string

First, we need a failing test:

// Centering an empty string returns an empty string

check (center('') : '');

This fails compile. We don't even have a procedure yet.

The tests drive the development

We don't write any code until we have a failing testcase!

© 2018 IBM Corporation

™

14

Example: Write a procedure to center a string

Now we can write some code

The first version of our procedure:

dcl-proc center;
dcl-pi *n varchar(1000);

string varchar(1000) const;
end-pi;
return ''; // WHAT????

end-proc;

© 2018 IBM Corporation

™

15

That is ridiculous to just return an empty string

Why code such a silly version of the procedure?

Because we only write enough code to make the test pass.

Our first test expects a result of '', so returning '' is the simplest way to make the
test pass.

This is what makes TDD hard.

It seems ridiculous at first.

But as you work on "real" procedures, you will see that it means you never have
any production code that is not tested.

Instead of writing that little bit of extra code, just add something to your test list.

© 2018 IBM Corporation

™

16

Example: Write a procedure to center a string

While writing the first version of the procedure, we have lots of ideas for the code
we want to write.

We don't write any extra code.

Instead, we write our ideas in our "test list".

We only write the minimum code to make the test pass

© 2018 IBM Corporation

™

17

Example

The test-list file after writing the first version of the procedure:

- Pass a value with no blanks, no centering
needed

- Pass a value with trailing blanks
- Pass a value with leading blanks
- Pass a value with leading and trailing blanks
- Maybe add an optional parameter to return a
different length?

© 2018 IBM Corporation

™

18

Example: Write a procedure to center a string

Compile the code and run the test again. It passes!

Add another test:

// An empty string returns an empty string

check (center('') : '');

// A string with no leading/trailing blanks

// returns the same string

check (center('abc') : 'abc');

Compile the tests and run again. The new test fails! GOOD!

© 2018 IBM Corporation

™

19

Example: Write a procedure to center a string

Second version of procedure: Change the RETURN statement a bit

dcl-proc center;
dcl-pi *n varchar(1000);

string varchar(1000) const;
end-pi;
return string;

end-proc;

Compile the code and run the tests again. They both pass! GOOD!

© 2018 IBM Corporation

™

20

Example

The test-list file after writing the second version of the procedure:

- Pass a value with no blanks, no centering
needed

- Pass a value with trailing blanks
- Pass a value with leading blanks
- Pass a value with leading and trailing blanks
- Maybe add an optional parameter to return a
different length?

© 2018 IBM Corporation

™

21

Example: Write a procedure to center a string

Add another test:

// An empty string returns an empty string

check (center('') : '');

// A string with no leading/trailing blanks returns same string

check (center('abc') : 'abc');

// String with trailing blanks returns balanced blanks

check (center('abc ') : ' abc ');

Compile the tests and run again. The new test fails!

That is GOOD! We want our tests to fail at first.

© 2018 IBM Corporation

™

22

Example: Write a procedure to center a string

The third version of the procedure will have to actually have some "real"
code ... Here's some simple code to make the third test work too

if %len(%trim(string)) <> %len(string); // some blanks
return ' ' + %trim(string) + ' ';

else;
return string;

endif;

Compile the code and run the tests again. They all pass! GREAT!

© 2018 IBM Corporation

™

23

A motivating article by "Uncle Bob"

http://blog.cleancoder.com/uncle-bob/2017/12/18/Excuses.html

The article compares the disciple of developing using TDD to the discipline of
doing double-entry bookkeeping.

"Both are disciplines used by experts who carefully manipulate complex documents full of arcane
symbols that must, under pain of terrible consequences, be absolutely correct in both type and
position."

…

Do accountants have deadlines? Do managers put pressure on them to finish their accounting by a
certain date? Of course! There’s no difference in the pressure. Accountants feel the pressure just
the same as programmers do.

…

Can you imagine a group of accountants saying to each other: “Guys, we’re really under the gun.
We’ve got to finish these accounts by Friday. So, do all the Assets and Equities. We’ll come back
and do the Liabilities later.”

Read the whole article!

http://blog.cleancoder.com/uncle-bob/2017/12/18/Excuses.html

© 2018 IBM Corporation

™

24

Do I need something like JUnit to do TDD?

Often, the term "TDD" gets tied in with frameworks such as JUnit (for testing

Java), PyUnit (for testing Python).

Using a framework is nice, but it's not necessary.

You just need to have a way of running self-checking testcases.

Two extremes:

• Edmund can use Junit to test the Java code he writes for RDi.

• Barbara writes RPG statements that target the function within the compiler

that she is working on.

© 2018 IBM Corporation

™

25

Is there a framework like JUnit for RPG?

Yes! RPGUNIT.

The next section of this presentation will walk through a more meaningful

example using RPGUNIT.

© 2018 IBM Corporation

™

26

Develop a procedure to get an

account balance from a file using

RPGUNIT

© 2018 IBM Corporation

™

27

Some initial setup

• The RPG unit framework expects the testcases to be in a service program

ctl-opt nomain;

• The framework has some procedures to check whether the test passed

/copy rpgunit/rpgunit1,testcase

• To simplify creating the test service program, we'll create a binding directory

with the module we are developing
ctl-opt bnddir('TDD_DEMO/UNITTEST');

• The prototype for the module we are developing is in TDD_DEMO/SOURCE

/copy TDD_DEMO/source,getbal_h

© 2018 IBM Corporation

™

28

The first version of the test list

Our (silly) design says that if the account is not found, the balance is zero.

- Account not found, return zero balance
- Account found, return the balance
- Maybe add a way to say whether the account
exists?

© 2018 IBM Corporation

™

29

The first version of the test module

**free
ctl-opt option(*srcstmt);
ctl-opt nomain;
ctl-opt bnddir('TDD_DEMO/UNITTEST');
/copy rpgunit/rpgunit1,testcase
/copy TDD_DEMO/source,getbal_h

dcl-proc Test_... Test procedures must start with

"test".

They must be exported.

© 2018 IBM Corporation

™

30

The first testcase

• Give a meaningful name to the procedure

dcl-proc Test_returnZeroForIdNotFound export;

• Use EXTPROC(*DCLCASE) to have the "real" name be mixed case

dcl-pi *n extproc(*dclcase) end-pi;

• The code to actually test the procedure call

dcl-s balance packed(11:2);

balance = getBalance ('abc');

• The code to check the result

assert (balance = 0 : 'Balance not 0 for id not found');

© 2018 IBM Corporation

™

31

The first testcase

dcl-proc Test_returnZeroForIdNotFound export;

dcl-pi *n extproc(*dclcase) end-pi;

dcl-s balance packed(11:2);

balance = getBalance ('abc');

assert (balance = 0 : 'Balance not 0 for id not found');

end-proc;

© 2018 IBM Corporation

™

32

Create the test service program (first attempt)

RUCRTTST TSTPGM(TDD_DEMO/TEST_BAL)
SRCFILE(TDD_DEMO/UNITTEST) SRCMBR(TEST_BAL)
COPTION(*SRCSTMT *EVENTF) DBGVIEW(*ALL)

Joblog:

File SOURCE in library TDD_DEMO with member GETBAL_H not found.

Compilation stopped. Severity 40 errors found in program.

Compilation failed. Module TEST_BAL not created in library TDD_DEMO.

We have to write some code now.

© 2018 IBM Corporation

™

33

The first version of our copy file

Copy file GETBAL_H

**free

dcl-s balance_t packed(11:2) template;

dcl-s id_t char(10) template;

dcl-pr getBalance like(balance_t) extproc(*dclcase);

id like(id_t) const;

end-pr;

© 2018 IBM Corporation

™

34

The first version of our code

Member GETBAL

**free

ctl-opt nomain;

/copy TDD_DEMO/source,getbal_h

dcl-proc getBalance export;

dcl-pi *n like(balance_t);

id like(id_t) const;

end-pi;

return 0;

end-proc;

There is enough code here for

the module to compile.

We'll return zero because that's

the simplest thing to do to make

the test pass.

We don't actually need to define

the file yet.

© 2018 IBM Corporation

™

35

Create the GETBAL module and create the UNITTEST bnddir

One time setup

CRTBNDDIR TDD_DEMO/UNITTEST

ADDBNDDIRE BNDDIR(TDD_DEMO/UNITTEST)
OBJ((TDD_DEMO/GETBAL *MODULE))

Do this every time you change the module under development or its test

CRTRPGMOD TDD_DEMO/GETBAL SRCFILE(TDD_DEMO/SOURCE) DBGVIEW(*ALL)

RUCRTTST TSTPGM(TDD_DEMO/TEST_BAL)
SRCFILE(TDD_DEMO/UNITTEST) SRCMBR(TEST_BAL)
COPTION(*SRCSTMT *EVENTF) DBGVIEW(*ALL)

Joblog:

Service program TEST_BAL created in library TDD_DEMO.

© 2018 IBM Corporation

™

36

Run the test

RUCALLTST TDD_DEMO/TEST_BAL DETAIL(*ALL)

Spool file:

*** Tests from TEST_BAL *** (iRPGUnit v2.1.0)

Date : 2018-05-08 / 17:42:40

Job : 138881/BMORRIS/QPADEV0001

User : BMORRIS

iRPGUnit : BMORRIS

Test_returnZeroForIdNotFound - Success

1 assertions

Success. 1 test case, 1 assertion, 0 failure, 0 error.

© 2018 IBM Corporation

™

37

Using the RPGUNIT plugin for RDi

Adding the RPGUNIT plugin to RDi is easy:

In RDi, do Help > Eclipse Marketplace

Type in RPGUNIT and press Go to find the plugin

Press the Install button and it will be installed

© 2018 IBM Corporation

™

38

Upload the RPGUNIT library

• Simply click on the upload button in the iRPGUnit preference page and it will be done for you

© 2018 IBM Corporation

™

39

Using the RPGUNIT plugin for RDi

Now that the plugin is installed, a new action appears for service programs:

© 2018 IBM Corporation

™

40

Using the RPGUNIT plugin for RDi

It's easy to see that the test passed.

Don't forget to add library RPGUNIT to the library list!

© 2018 IBM Corporation

™

41

The second testcase - look at our test list

The next test scenario is to actually return the balance for a real account

- Account not found, return zero balance
- Account found, return the balance
- Maybe add a way to say whether the account
exists?

© 2018 IBM Corporation

™

42

The second testcase

dcl-proc Test_returnBalanceForValidId export;

dcl-pi *n extproc(*dclcase) end-pi;

dcl-s balance packed(11:2);

add_record ('123' : 123.45);

balance = getBalance ('123');

assert (123.45 = balance : 'Balance <> 123.45');

end-proc;

Notice the call to add_record. This is a new procedure in our test source.

© 2018 IBM Corporation

™

43

The second testcase

It's time to actually work with the file.

• Create a test file for the procedure to work with

• Override to the file so getBalance won't pick up the production file

• Add a record

Notice in the testcase that there is only a call to add_record.

Where is the code to create the file and do the override?

© 2018 IBM Corporation

™

44

Set up and tear down

• Often it is required to set up data or allocate

resource before a test suite is executed to

ensure a reproducible test environment for

valid test results. Also people often want to

clean up test data or release resources at

the end of a unit test.

• Sometimes the same wish applies to a

single test case.

• Both requirements are supported by

RPGUnit

• If the procedure is present and exported, it

will be called at the right time

© 2018 IBM Corporation

™

45

Setup procedure

RPGUNIT will call the "setup" procedure before running each testcase.

dcl-proc setup export;

callp(e) runCmd ('DLTF QTEMP/BALANCEF');

create_empty_file ();

end-proc;

dcl-proc create_empty_file;

runCmd ('CRTPF QTEMP/BALANCEF SRCFILE(TDD_DEMO/SOURCE) '

+ 'SRCMBR(BALANCEF)');

runCmd ('OVRDBF BALANCEF QTEMP/BALANCEF');

end-proc;

NOTE: runCmd() is provided by RPGUNIT and just calls QCMDEXEC

© 2018 IBM Corporation

™

46

Teardown procedure

RPGUNIT will call the "teardown" procedure after running each testcase.

dcl-proc teardown export;

callp(e) runCmd ('DLTF QTEMP/BALANCEF');

end-proc;

© 2018 IBM Corporation

™

47

Some assumptions

Our new procedure is working with an existing file.

So we can assume

• The compile-time file TDD_DEMO/BALANCEF_D exists

• The source for the file exists in TDD_DEMO/SOURCE, member BALANCEF

DEMO
TIME
(tv2 *)

© 2018 IBM Corporation

™

48

Run the new version of the test

(Don't forget to recreate the test by calling RUCRTTST)

The new test failed! (As expected.)

© 2018 IBM Corporation

™

49

The second version of our getBalance procedure

dcl-proc getBalance export;

...

dcl-f balancef keyed
extdesc('TDD_DEMO/BALANCEF_D')
extfile('BALANCEF');

dcl-ds ds likerec(balancer) inz;

chain id balancer ds;

return ds.balance;

end-proc;

Added:

• The file definition

• The data structure definition

• The CHAIN opcode

DEMO
TIME
dv2

© 2018 IBM Corporation

™

50

Run the new version of the test

Recreate the GETBAL module and recreate the test so it picks up the new

GETBAL module.

The new test passed! And the first test still passed too!

© 2018 IBM Corporation

™

51

The third testcase - look at our test list

The next test scenario is to add a way to say whether the account exists

- Account not found, return zero balance
- Account found, return the balance
- Maybe add a way to say whether the account
exists?

© 2018 IBM Corporation

™

52

The third testcase

dcl-proc Test_setFoundParmIfIdNotFound export;

dcl-pi *n extproc(*dclcase) end-pi;

dcl-s balance packed(11:2);

dcl-s found ind inz(*on);

balance = getBalance ('123' : found);

assert (balance = 0 : 'Balance should be 0');

assert (found = *off : 'Found should be *off');

end-proc;

Compiling this will fail since our prototype doesn't have two parameters.

.

Add a "found" parameter to

the getBalance call

© 2018 IBM Corporation

™

53

Add the "found" parameter to the prototype in the copy file

**free

dcl-s balance_t packed(11:2) template;

dcl-s id_t char(10) template;

dcl-pr getBalance like(balance_t) extproc(*dclcase);

id like(id_t) const;

found ind options(*nopass);

end-pr;

Make it optional, in case the caller doesn't care.

DEMO
TIME
dv3_h

© 2018 IBM Corporation

™

54

Run the third test

• It should fail

© 2018 IBM Corporation

™

55

The third version of our getBalance procedure

dcl-proc getBalance export;

...

chain id balancer ds;

if %found;

return ds.balance;

else;

if %parms >= %parmnum(found);

found = *off;

endif;

return 0;

endif;

end-proc;

Wouldn't it be simpler to just set the

"found" parameter.

Isn't the "IF" statement too much

code for how TDD works?

No, we need the IF, because it's very

dangerous to access an unpassed

parameter. Our earlier testcase

doesn't pass the parameter.

© 2018 IBM Corporation

™

56

The third version of our getBalance procedure

chain id balancer ds;

if %found;

if %parms >= %parmnum(found);

found = *off;

endif;

return ds.balance;

else;

if %parms >= %parmnum(found);

found = *off;

endif;

return 0;

endif;

end-proc;

We might as well add the

new code to the other

branch of the IF too.

DEMO
TIME
dv3b

© 2018 IBM Corporation

™

57

The updated test list

- Account not found, return zero balance
- Account found, return the balance
- Check the found parameter when the record is
not found

- Check the found parameter when the record is
found

© 2018 IBM Corporation

™

58

Run the new version of the test

(Don't forget to recreate the GETBAL module and recreate the test so it picks up

the new GETBAL module.)

The new test passed! And the other tests passed too!

…

Now, let's imagine that it's the end of the working day.

And the next day, there's an emergency problem to work on.

We forget that we're not done yet.

© 2018 IBM Corporation

™

59

Make sure all the code in our procedure is tested

(Remember that we forgot we aren't actually finished our test list yet.)

Let's use Code Coverage to make sure we have tested all our code. (Even

though we're using TDD, we're also human …)

© 2018 IBM Corporation

™

60

Make sure all the code in our procedure is tested

Set a service breakpoint on our service program modules

Set "Code

Coverage"

mode

DEMO
TIME
(codecov *)

© 2018 IBM Corporation

™

61

Oh oh … our tests don't test all our code

Only 86% of our code is tested!

Drill down into the code. We haven't tested the "found = *off" line

DEMO
TIME
(debug *)

© 2018 IBM Corporation

™

62

We didn't follow TDD guidelines!

if %found;

if %parms >= %parmnum(found);

found = *off;

endif;

return ds.balance;

else;

if %parms >= %parmnum(found);

found = *off;

endif;

return 0;

endif;

Remember that we said

this?

"We might as well add

the new code to the other

branch of the IF too."

We should not have done

that!

It violates one of the

principles of TDD.

© 2018 IBM Corporation

™

63

The fourth testcase

Add the missing testcase from our test list

dcl-proc Test_setFoundParmIfIdFound export;

dcl-pi *n extproc(*dclcase) end-pi;

dcl-s balance packed(11:2);

dcl-s found ind inz(*off);

add_record ('123' : 123);

balance = getBalance ('123' : found);

assert (balance = 123 : 'Balance should be 123');

assert (found = *on : 'Found should be *on');

end-proc; DEMO
TIME
(tv4)

© 2018 IBM Corporation

™

64

Run the new version of the test

(Don't forget to recreate the GETBAL module and recreate the test so it picks up

the new GETBAL module.)

The new test failed!

© 2018 IBM Corporation

™

65

Here's our getBalance procedure

chain id balancer ds;

if %found;

if %parms >= %parmnum(found);

found = *off;

endif;

return ds.balance;

else;

if %parms >= %parmnum(found);

found = *off;

endif;

return 0;

endif;

end-proc;

Oops!

It should be "found = *on;

This is why we

never add extra

code when making

our changes.

DEMO
TIME
(fix)

© 2018 IBM Corporation

™

66

After fixing the code

(Don't forget to recreate the GETBAL module and recreate the test so it picks up

the new GETBAL module.)

The new test passed!

© 2018 IBM Corporation

™

67

Run Code Coverage again

• Now, the "found = *on" line is tested!

© 2018 IBM Corporation

™

68

The updated test list

We are done!

Almost …

- Account not found, return zero balance
- Account found, return the balance
- Check the found parameter when the record is
not found

- Check the found parameter when the record is
found

© 2018 IBM Corporation

™

69

Here's our getBalance procedure

chain id balancer ds;

if %found;

if %parms >= %parmnum(found);

found = *on;

endif;

return ds.balance;

else;

if %parms >= %parmnum(found);

found = *off;

endif;

return 0;

endif;

This code is very similar.

Let's see if we can only code

the %parms check once.

© 2018 IBM Corporation

™

70

"Refactoring"

Changing code without changing what it does is called "refactoring".

Considering whether we should refactor our code is part of the TDD loop.

Thinking about refactoring is done after each time we get all our tests to pass.

© 2018 IBM Corporation

™

71

Our refactored procedure

chain id balancer ds;

if %parms >= %parmnum(found);

found = %found;

endif;

return ds.balance;

chain id balancer ds;
if %found;
if %parms >= %parmnum(found);

found = *on;
endif;
return ds.balance;

else;
if %parms >= %parmnum(found);

found = *off;
endif;
return 0;

endif;
Before After

Now, we're done!

© 2018 IBM Corporation

™

72

We're done, but let's think about the mistake we made

We stopped work before completing our test list

(That's normal to have to take breaks … the work might last days or weeks)

But we forgot to finish our testing!

And there was a bug in our code

If no other production code calls our procedure with the "found" parameter

when the record was found, we will never find out about the bug

Until … someone adds the "found" parameter to their code, but they don't test

their own code properly and the bug gets discovered by a customer

How could we avoid this?

© 2018 IBM Corporation

™

73

New rule

A new rule:

Always stop work with a failing testcase

Even if you only have time to add a testcase like this:

dcl-proc Test_finish_testing;

assert (*off : 'Finish this testing!');

end-proc;

But make sure you also take the few seconds to recreate the test, to make

sure it fails when you run it as part of your general testing.

© 2018 IBM Corporation

™

74

Updated "TDD loop"

Loop

Write a failing test

Write the minimum amount of code to make the test pass

If you want to add a bit of extra code … don't do it!

Just add a test to your test list

Run all existing tests until they all pass

Refactor if necessary

If stopping work, make sure you have a failing testcase (NEW)

End-loop

© 2018 IBM Corporation

™

75

Some "gotchas" we ran into using RPGUNIT

• Library RPGUNIT must be in the library list

– The preferences by default point to a job description named RPGUNIT in

the library where the tests are. If this is missing, an error occurs.

– Using *CURRENT for the *LIBL avoids this requirement

• The test procedure ends as soon as the first assert fails

• For calls to assert(), avoid using CALLP(E) or putting them in a monitor, since

that will prevent them from being logged

© 2018 IBM Corporation

™

76

Before debugging

• To debug or

• Analyze code coverage

– Set this preference

– Otherwise will hang RDi

• For details, see link

https://irpgunit.sourceforge.io/help/html/quickstart/debug.html

© 2018 IBM Corporation

™

77

RPGUNIT documentation and tutorials

• https://irpgunit.sourceforge.io/

• https://irpgunit.sourceforge.io/help/

• http://rpgunit.sourceforge.net/tutorial.html

• Comments, suggestions to rpgunit@tools400.de

• Discussion of RPGUnit RDi plugin at WDSCI-L mailing list

• For bug reports open a ticket at iRPGUnit bug tracker.

• Included APIs

– runCmd() – execute command via QCMDEXC

– waitSeconds() – suspends job for specified number of seconds

– getAssertFailEvtLong() - Extract the testcase status including the

stacktrace

– etc.

https://irpgunit.sourceforge.io/
https://irpgunit.sourceforge.io/help/
http://rpgunit.sourceforge.net/tutorial.html
mailto:rpgunit@tools400.de
http://lists.midrange.com/mailman/listinfo/wdsci-l
https://sourceforge.net/p/irpgunit/tickets/

© 2018 IBM Corporation

™

78

More RPGUNIT features

• From context menu can do:

• Can filter only failing tests etc.

Rerun all tests

Expand/Collapse All

© 2018 IBM Corporation

™

79

Show RPGUNIT reports

© 2018 IBM Corporation

™

80

Take Aways

• Software Best Practices will save you time and money

• Professional IBM i developers are professional software engineers

• Test Driven Development gives you confidence to move your software

forward

• IBM i tooling exists to

– Run automated unit tests – RPGUNIT

– Do code coverage analysis – CODECOV

– Refactor ILE RPG – RDi

• Michael Feathers – green tufts of grass in a muddy field

