
Intro to Ruby

Aaron Bartell
abartell@krengeltech.com

Copyright 2014 Aaron Bartell

Ruby… a dynamic, open source programming
language with a focus on simplicity and
productivity. It has an elegant syntax that is natural
to read and easy to write.

Features:
- variable declarations are unnecessary
- variables are dynamically and strongly typed
- syntax is simple and consistent
- everything is an object
- classes, methods, inheritance, etc.
- NO SEMI COLONS!!!

- Est 1995 by Yukihiro "Matz" Matsumoto
- Mass acceptance 2006
- Very active and well organized community
- October 2013, on IBM i with PowerRuby

ruby-lang.org – Home website
ruby-doc.org - Formal documentation
codecademy.com - Learn Ruby in the browser for free
amzn.to/1apcrse - Metaprogramming Ruby: Program Like the Ruby Pros

Matz desired a language which he himself enjoyed using, by minimizing
programmer work and possible confusion - enter Ruby.

Where can I use Ruby?

Web apps with Rails - rubyonrails.org

iOS with RubyMotion - rubymotion.com

Android with Ruboto - ruboto.org

Desktop (Mac, Linux, Windows) with Shoes - shoesrb.com

ShoesRB.com

irb (Interactive Ruby) is an interactive programming
environment for Ruby that allows you to quickly test various
coding ideas.

ruby-doc.org/stdlib-2.0/libdoc/irb/rdoc/IRB.html - Formal documentation
tryruby.org – Ruby code in the browser without having to install anything.
railscasts.com/episodes/48-console-tricks - Console tricks
stackoverflow.com/questions/123494/whats-your-favourite-irb-trick - Favorite irb tricks from community

● Included with Ruby distribution.
● Symbolic link in /QOpenSys/usr/bin

exists for the irb binary
● Great for learning Ruby through quick

tests vs. editing files, saving, and
invoking.

● irb is the foundation for the rails
console.

● nil in screenshot is the reality that every
Ruby method (i.e. puts) returns a
value.

Invoke Ruby program
Syntax:
 ruby /ifs/folder/path/<program_name>.rb

View active Ruby runtime version:
 ruby -v

Alter Ruby runtime version (think TGTRLS):

 export PATH=/PowerRuby/prV2R1M0/bin:$PATH

Symbolic link in /QOpenSys/usr/bin exists for the default ruby binary

def say_hi name
 puts "hi #{name}"
end

say_hi "Aaron"

tryruby.org – Ruby code in the browser without having to install anything.
ruby-doc.org/stdlib-2.0/libdoc/irb/rdoc/IRB.html - Formal documentation

/home/aaron/hello.rb

Comments

● Starts with # and continues to end of line
● =begin and =end allow for longer comments or commenting out a large

portion of code

This is a comment

x = 1 # This is a comment

=begin
if customer_credit == "BAD"
 stop_doing_business("NOW")
end
=end

Methods

def hi(name, age)
 puts "hello #{name}. Age: #{age}"
end
hi("Mr Ruby", 20)

parentheses are
optional for defining
or calling a method.

Note: puts is a Ruby kernel method

def hi name, age
 puts "hello #{name}. Age: #{age}"
end
hi "Mr Ruby", 20

http://ruby-doc.org/core-2.1.0/Kernel.html

Methods
def say_hello_to(name, age=99)
 return "hello #{name}. You are #{age}"
end
puts say_hello_to("Mr. Ruby")

return value is last statement
executed or use the explicit
return keyword

default values can be
defined with age=99

pass in a variable number of
parameters using an asterisk
(*).

Parameters are "pass-by-value", though you
can choose to mutate strings.

Note: puts is a Ruby kernel method

def add_numbers(*numbers)
 total = 0
 numbers.each { |number| total += number }
 return total
end
puts add_numbers(1, 2, 3)

http://ruby-doc.org/core-2.1.0/Kernel.html

Blocks

Events that occur with a block
1. File.open will first create the file if it doesn't exist
2. It will yield to the block of code and pass an instance of the file.
3. file.puts is invoked and data is written to file
4. Control is returned to the File.open method and it issues a close to the file.

yehudakatz.com/2012/01/10/javascript-needs-blocks - Comparing Javascript to Ruby

File.open('myfile.txt', 'w') do |file|
 file.puts "Some data"
end

...used extensively in Ruby and Rails, though you
don't need to intimately understand them to use
them.

★ Pass a chunk of code to be invoked at a later time.
★ Similar to Javascript anonymous functions

Blocks

robertsosinski.com/2008/12/21/understanding-ruby-blocks-procs-and-lambdas
tek.io/1d9FUuS - Understand how to use and implement Ruby blocks
skorks.com/2010/05/closures-a-simple-explanation-using-ruby

['a','b','c'].each do |value|
 puts "Value:#{value}"
end
Value:a
Value:b
Value:c

['a','b','c'].each

do |value|
 puts "Value:#{value}"
end

The each portion is a method call

The do and end is the (code) block and
value is the single parameter passed
into the block from the each method.

Another example... Breaking it down...

Data Types
Dynamically Typed Language…
You don’t have to declare your variables ahead of time. They gain their data-
type when first used. Ruby interpreter looks at the type of value you are
assigning to the variable and dynamically works out the variable type.

★ Boolean
★ Constants
★ Symbols
★ Hashes
★ Arrays
★ Strings
★ Numbers

en.wikibooks.org/wiki/Ruby_Programming/Data_types – Quick high-level overiew

Data Types - Constants

★ Start with a capital letter
★ You can change a constant’s value but Ruby will issue a warning.
★ Ruby variables are case sensitive so two of the below variables that are

spelled the same are actually different.

I_am_constant = "value"
i_am_not_constant = "value"
I_AM_constant = "value"

Data Types - Strings

★ Use single or double quotes
★ Interpolation with double quotes: "hello #{name}"
★ Mutable, especially with names ending with "!" (aka "bang method")
★ Unicode fully supported along with 90+ other character encodings.

ruby-doc.org/core-2.1.0/String.html – Formal docs

irb> name = "Aaron"
 => "Aaron"
irb> name.class
 => String
irb> name.encoding
 => #<Encoding:UTF-8>
irb> "hello #{name}"
 => "hello Aaron"

irb> str = "A STRING"
 => "A STRING"
irb> str.downcase
 => "a string"
irb> puts str
 => "A STRING"
irb> str.downcase!
 => "a string"
irb> puts str
 => "a string"

Bang Methods (i.e. str.downcase!)

Data Types - Symbols
● Start with a colon
● Immutable (can't themselves be changed)

● Used for string values that don’t change often to lessen CPU consumption.
● Same-named symbols are stored once in memory no matter how many

times they are defined.

irb> 'my_string'.object_id
 => 70227383826500
irb> 'my_string'.object_id
 => 70227383742320
irb> :my_symbol.object_id
 => 927688
irb> :my_symbol.object_id
 => 927688

irb> 'hello'.to_sym
 => :hello

:my_symbol

colon name

Data Types - true, false and nil

● true, false, and nil are keywords in Ruby
● All are singleton classes (only one instance in existence)
● true and false are boolean values (surprise!)
● nil is the absence of a value (surprise! part II)
● Method nil? is available to all objects

ruby-doc.org/core-2.1.0/NilClass.html – Formal docs
ruby-doc.org/core-2.1.0/TrueClass.html – Formal docs
ruby-doc.org/core-2.1.0/FalseClass.html – Formal docs

irb> nil.class
 => NilClass
irb> "hello".nil?
 => false

irb> true.class
 => TrueClass
irb> 1 == 1
 => true

irb> false.class
 => FalseClass
irb> 1 > 2
 => false

http://ruby-doc.org/core-1.9.3/Object.html#method-i-nil-3F

Data Types - Numbers
● All numerics are immutable
● If using decimal point, digits must appear before and after (i.e. correct 0.12 incorrect .12)
● Use underscores for numeric literals: population_max = 315_900_000
● Standard operators: +, -, *, /, %, **

ruby-doc.org/stdlib-2.1.0/libdoc/mathn/rdoc/Numeric.html – Formal docs

irb> 1.class
 => Fixnum
irb> 9_999_999_999_999_999_999.class
 => Bignum
irb> 12.34.class
 => Float
irb> BigDecimal.new('12.34').class
 => BigDecimal

irb> 1.odd?
 => true
irb> 2.times do
irb> puts "hi"
irb> end
hi
hi
irb> 10.to_s
 => "10"

Numeric

 |-->Integer

 | |-->Fixnum - Up to 31 bits
 | |-->Bignum - Everything over 31 bits. Converts from FixNum to BigNum automagically
 |-->Float - Represent inexact real numbers using the native architecture
 |-->BigDecimal - Most commonly used for amounts (i.e. monetary)

http://ruby-doc.org/stdlib-2.1.0/libdoc/mathn/rdoc/Numeric.html
http://ruby-doc.org/stdlib-2.1.0/libdoc/mathn/rdoc/Numeric.html
http://www.ruby-doc.org/core-2.1.0/Integer.html
http://ruby-doc.org/stdlib-2.1.0/libdoc/mathn/rdoc/Fixnum.html
http://www.ruby-doc.org/core-2.1.0/Bignum.html
http://www.ruby-doc.org/core-2.1.0/Float.html
http://www.ruby-doc.org/stdlib-2.1.0/libdoc/json/rdoc/BigDecimal.html

Data Types - Hashes
● Store a list of indexed key value pairs
● => is a hash rocket, separates keys from values
● Used A LOT in Ruby

my_hash = { :one => "value 1",
 :two => "value 2",
 :three => "value 3"}

puts my_hash[:one] # value 1
puts my_hash[:two] # value 2
puts my_hash[:three] # value 3

my_hash.delete(:three)

my_hash = Hash.new
my_hash[:one] = "value 1"
my_hash[:two] = "value 2"
my_hash[:three] = "value 3"

my_hash.each do |key, value|
 puts value
end

Produces:
value 1
value 2
value 3

my_hash = { one: "value 1",
 two: "value 2",
 three: "value 3"}

Hash rocket short-form

Data Types - Arrays
● A lot like Hashes except their keys are always consecutive numbers
● Start at an index of zero (0)
● The left shift operator (i.e. <<) will add an element to the array.

array1 = ["These", "are", "array", "elements"]

array2 = []
array2 << "Use" # index 0
array2 << "left" # index 1
array2 << "shift" # index 2
array2 << "to" # index 3
array2.push "add" # index 4, another way to add ele

my_str = array2.pop # returns "add", removes from array

Loops
Loops are an important part of any language, but you'll find Ruby leans much
more towards "blocks"

array1 = ["Need", "more", "gum"]
i = 0
while array1[i]
 puts array1[i]
 i += 1
end
#=> Need
#=> more
#=> gum

for item in array1
 puts item
end
#=> Need
#=> more
#=> gum

hash1 = { name:"Larry", age:34,
 job:"plumber" }

for key, val in hash1
 puts "#{key} is #{val}"
end
#=> name is Larry
#=> age is 34
#=> job is plumber

Loop over a hash Loop over an array

Logic

if x =< 10
 x += 1
end

if x < 10 then x += 1 end

Single line

if x < 10 || y == 10
 code
elseif x > 10 && y == 10
 code
else
 code
end

unless x == 10
 code
end

unless is the opposite of if

Normal

if, elseif, and else

count = case
 when 1 == x
 "one"
 when 2 == x
 "two"
 else
 "none"
 end

case statement

Conditional Assignment and Execution

Value of x will be replaced with
"default", but only if x is nil or false

x = nil
if x.nil?
 x = "default"
end

x ||= "default"

x = "default" if x.nil?

Normal conditional assignment

Line will only execute if x is nil

Exception Handling
● Exceptions indicate something has gone wrong (hard errors)
● Custom exceptions can be created
● Ruby programs terminate when an exception is raised unless it is rescued
● Base class is Exception
● Use raise to cause an exception

irb> 1 / 0
 => ZeroDivisionError:
divided by 0
irb> 1 / 0 rescue 0
 => 0

begin

 sum / 0

rescue ZeroDivisionError => e

 puts 'Error: #{sum} / 0 Text: #{e}'

else

 # do this if no exception was raised

 # (optional)

ensure

 # do this regardless of whether an

 # exception was raised (optional)

end

End-of-line rescue with default
return value

Classes
● Use when you need to instantiate to a variable or for inheritance.
● Remember: Everything in Ruby is an object (though they hide this complexity much better than other languages)

● Methods are public by default

class Barber
 def initialize name
 @name = name
 end
 def cut_hair
 puts "Not that close #{@name}!"
 undo_haircut
 end
private
 def undo_haircut
 puts "Crap! Ctrl+Z is not working!"
 end
end

b = Barber.new "Aaron"
b.cut_hair
Not that close Aaron!
Crap! Ctrl+Z is not working!

bit.ly/1jjjgUH – Formal docs

Barber.new invokes initialize, the
constructor

@name is a class instance variable
which all start with @ and are available
to any method within the instance.

Everything below private keyword will
be a private method.

Classes - accessors
● attr_accessor makes getters and setters dead simple (big time saver)
● attr_reader and attr_writer also exist for more fine-grained control
● Note: attr_accessor is actually a method call without parentheses and with :

name as the sole parameter. As seen here, some features are implemented
using Ruby to enhance Ruby - brilliant!

bit.ly/1jjlMdr – Formal docs

class Barber
 attr_accessor :name
end

class Barber
 def name
 @name
 end
 def name=(value)
 @name = value
 end
end

long-formshort-form

Given the below code:

b = Barber.new
b.name = "Aaron"

The second line is actually invoking the name= method in
the Barber class instace (b). The Ruby community calls
this an "operator method" - a unique idea that requires
mental acclimation for new-comers.

Variables
● Case sensitive
● Can contain letters, numbers and underscore but can't begin with a number
● Snake casing is the popular Ruby convention (i.e. my_var_name vs. myVarName)

Local variable - Begins with a lowercase letter. Scoped to the module, method or block.
local_var = …

Instance variable - Scoped to the instance of a class.
@instance_var = …

Class variable - Spans all instances of a class.
@@class_var = …

Global variable - Visible anywhere in your program. Community says not good practice
to use.
$global_var = …

tutorialspoint.com/ruby/ruby_variables.htm – Good tutorial

Modules

● Collection of classes, methods, and constants
● Used for namespacing, similar to Java's

package
● Supports "mixins"
● Procedural code allowed

● you can ignore Class system as needed.
● Mix and match object with procedural code

module Foo
 MY_CONSTANT = 100
 def a1
 puts "a1: hello"
 end
 def Foo.a2
 puts "a2: hello"
 end
 def self.a3
 puts "a3: hello"
 end
end

Foo::MY_CONSTANT
Foo.a2
Foo.a3
Foo.a1

100
"a2: hello"
"a3: hello"
NoMethodError:
undefined method `a1'
for Foo:Module

def Foo.a2 and def self.a3 accomplish the
same thing as they both relate their methods back
up to module Foo.

def a1 is not able to be invoked in the current
context. It first needs to be included into another
class in a "mixin" scenario.

Mixins
● Eliminate need for multiple

inheritance
● Similar to /copy in RPG to bring

in a chunk of code
● Use include to "mix in" a

module within a class

bit.ly/1g8cTyp – Formal docs

module Foo
 def a1
 puts "a1: I am a #{self.class.name}"
 end
 def Foo.a2
 puts "a2: I am a #{self.class.name}"
 end
 def self.a3
 puts "a3: I am a #{self.class.name}"
 end
end

class Bar
 include Foo # Foo gets "mixed in"
 def run
 a1
 Foo.a2
 Foo.a3
 end
end

Bar.new.run
#=> a1: I am a Bar
#=> a2: I am a Module
#=> a3: I am a Module

Duck typing

Walk like a duck? Quack like a duck? Must be a duck.

Ruby is less concerned with the object type and
more concerned with what methods can be called
on it and what operations can be performed on it.

ruby-doc.org/core-1.9.3/Object.html#method-i-respond_to-3F – respond_to? docs
en.wikipedia.org/wiki/Duck_typing – Concept
rubylearning.com/satishtalim/duck_typing.html – Formal docs

"Feathers".respond_to?(:to_str)
=> true

4.respond_to?(:to_str)
=> false

nil.respond_to?(:to_str)
=> false

Open Classes
● Ruby runtime allows the further defining of existing classes
● I'd argue to never change base Ruby classes as below, but this immediately shows

the power.

vitarara.org/cms/ruby_metaprogamming_declaratively_adding_methods_to_a_class – Example
cantgrokwontgrok.blogspot.com/2012/01/ruby-open-classes.html – Example
amzn.to/1d9BxQu – Metaprogramming Ruby: Program Like the Ruby Pros

irb> '0'.is_number?
 => NoMethodError: undefined method `is_number?' for "0":String
irb> class String
irb> def is_number?
irb> true if Float(self) rescue false
irb> end
irb> end
irb> '0'.is_number?
 => true

class Customer < ActiveRecord::Base
end

...classes are never closed. You can always add
methods to an existing class - even at runtime.

When the Rails application starts, it will
query DB2 for the customer table
metadata so it can dynamically insert
getters and setters for column data.

DSL - Domain Specific Language

● An extension of Ruby syntax - methods look like keywords.
● Meant to create syntax for a particular problem that feels more natural
● You can create a custom DSL for your company's specific needs
● jQuery (internal) and SQL (external) are both DSLs.
● Often times it is used for a custom configuration file, like the routes.rb file of a

Rails application, or to simplify the altering of a database.

en.wikipedia.org/wiki/Domain-specific_language – Computer Science definition
infoq.com/presentations/domain-specific-languages – Intro to DSL (Martin Fowler)
softwarebyjosh.com/2012/01/08/How-To-Write-Your-Own-DSL.html - Step by step

Blog::Application.routes.draw do
 resources :posts
end

… a computer language or syntax
specialized to a particular
application domain.

Both create_table and resources are
actually a regular Ruby methods

app/config/routes.rb

class CreateProducts < ActiveRecord::Migration
 def change
 create_table :products do |t|
 t.string :name
 t.text :description
 t.timestamps
 end
 end
end

app/db/migrations/*_create_products.rb

Rake ... a software task management tool similar to “make”. It allows you to
specify tasks and describe dependencies as well as to group tasks in a
namespace.

Invoke via PASE command line:
$ rake set_pay_in_full

● Est 2005 by Jim Weirich
● Syntax is completely defined in Ruby
● “Prerequisites” allow for things like the Rails :environment be loaded before the task is

invoked, giving full access to all models and other application code.
● One could think of it as “The CL of Ruby”

task :set_pay_in_full => :environment do
 Enrollment.all.each do |e|
 e.pay_in_full = e.term.pay_in_full
 e.save!
 end
end

github.com/jimweirich/rake – Home website
railscasts.com/episodes/66-custom-rake-tasks – Video tutorial overview

my_app/lib/tasks/set_pay_in_full.rake

RubyGems… simplify the process of installing, removing,
updating and managing Ruby libraries and their dependencies.

rubygems.org - Home website
linuxjournal.com/article/8967 – RubyGem history

● Est 2001
● Server for hosting and distribution of

gems, rubygems.org
● Manage gem dependencies
● Manage multiple versions of the same

library easily
● Included in Ruby as of 1.9.3
● Rails and Bundler are gem themselves

Ruby is a great language, but the Ruby community wanted to start
modularizing and sharing code - enter RubyGems.

- every Ruby business programmer

gem list # List installed gems
gem environment # Display RubyGems config info
gem install rails # Install a named gem
gem update rails # Update a named gem
gem update # Update all installed gems
gem update --system # Update RubyGems itself
gem uninstall rails # Remove an installed gem

$ gem list

*** LOCAL GEMS ***
actionmailer (4.0.0)
actionpack (4.0.0)
activemodel (4.0.0)
activerecord (4.0.0)
activesupport (4.0.0)
atomic (1.1.14)
bigdecimal (1.2.0)
bootstrap-sass (3.0.3.0)
builder (3.1.4)
bundler (1.3.5)
coffee-rails (4.0.0)
coffee-script (2.2.0)
. . .
rails (4.0.0)

$ gem list -d
. . .
ibm_db (2.5.11)
 Author: IBM
 Homepage: rubyforge.
org/projects/rubyibm/
 Installed at:
 /PowerRuby/prV2R0M0/lib/ruby/gems/2.
0.0
 Rails Driver and Adapter

guides.rubygems.org/command-reference/#gem_list - Formal docs

guides.rubygems.org/command-reference/#gem_environment - Formal docs

The gem environment command conveys a lot of important
information about where Gems will be placed when gem install
is run, what paths will be searched for Gems at runtime, and what
site to look at to download new gems.

$ gem environment
RubyGems Environment:
 - RUBYGEMS VERSION: 2.1.9
 - RUBY VERSION: 2.0.0 (2013-06-27 patchlevel 247) [powerpc-aix5.3.0.0]
 - INSTALLATION DIRECTORY: /PowerRuby/prV2R0M0/lib/ruby/gems/2.0.0
 - RUBY EXECUTABLE: /PowerRuby/prV2R0M0/bin/ruby
 - EXECUTABLE DIRECTORY: /PowerRuby/prV2R0M0/bin
 - SPEC CACHE DIRECTORY: /home/AARON/.gem/specs
 - RUBYGEMS PLATFORMS:
 - ruby
 - powerpc-aix-5
 - GEM PATHS:
 - /PowerRuby/prV2R0M0/lib/ruby/gems/2.0.0
 - /home/AARON/.gem/ruby/2.0.0
 - GEM CONFIGURATION:
 - :sources => ["http://rubygems.org/"]
 - REMOTE SOURCES:
 - http://rubygems.org/

yaml
● "YAML Ain't Markup Language" (abbreviated YAML)
● Use for human-friendly data serialization (i.e. config files)
● Used by many programming languages, including Ruby
● Ruby's implementation is done with the Psych Gem

yaml.org – Home site
yaml.org/YAML_for_ruby.html – Ruby specific from home site
github.com/tenderlove/psych - Ruby's implementation

development:
 adapter: ibm_db
 username: A2222
 password: A2222
 database: '*LOCAL'
 schema: A2222_D

{ 'development' => {
 'adapter' => 'ibm_db',
 'username' => 'A2222',
 'password' => 'A2222',
 'database' => '*LOCAL',
 'schema' => A2222_D
 }
}

Before YAML After YAML

References

Matz Ruby Intro (tongue in cheek): slideshare.net/vishnu/the-top-10-reasons-the-ruby-
programming-language-sucks/

Further Learning
TutorialsPoint.com/ruby
CodecAdemy.com/tracks/ruby
CodeSchool.com/paths/ruby
en.wikibooks.org/wiki/Ruby_Programming
TeamTreehouse.com
PowerRuby.worketc.com/kb - PowerRuby knowledge base
iwanttolearnruby.com - large collection of sites

http://www.slideshare.net/vishnu/the-top-10-reasons-the-ruby-programming-language-sucks/
http://www.slideshare.net/vishnu/the-top-10-reasons-the-ruby-programming-language-sucks/
http://www.slideshare.net/vishnu/the-top-10-reasons-the-ruby-programming-language-sucks/

The End!

Aaron Bartell
abartell@krengeltech.com
www.MowYourLawn.com
twitter.com/aaronbartell

mailto:abartell@krengeltech.com
mailto:abartell@krengeltech.com

