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Justin has over 20 years’ experience 

working in various software roles and is 

an outspoken free software evangelist, 

delivering enterprise solutions and 

community education on databases, 

integration work, architecture, and 

technical leadership.

He is currently the Field CTO and Chief 

Evangelist at Gradle Enterprises
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Enterprise Messaging Systems: What's 
the big deal?
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Quick Exercise…

• I’m going to show you three slides

• They all have something in common…

• See if you can figure out what it is!
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The Chupacabra
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A Magical Unicorn…
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Traditional Messaging Middleware

• Applications often have a need to send information back and forth to one another in a normalized fashion

• Before the advent of messaging systems, it was often difficult if not impossible to “federate” applications 

written in disparate languages or residing on heterogeneous platforms

• For instance, JMS, the Java Messaging Service, arose out of a growing need to federate very different 

systems with each other

Java Application IBM i Application
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A Word on ESBs

• Perhaps the most recognizable solution for this problem of heterogeneous systems integration is the 

pattern of an Enterprise Service Bus or ESB

• An ESB is an architectural design pattern that focuses on providing federation between systems using a 

common runtime

• Ideally, a Service Bus will provide loosely coupled endpoints to which various, heterogeneous systems 

can communicate with one another via their native frameworks

• So, for instance, a .NET SOAP-driven application should be able to send data along the bus, which could 

be received by, say, a Java-based JMS destination

• The ESB will provide payload and protocol normalization to facilitate that communication

• Loose coupling will ensure that services can remain unaware of federated services’ languages and 

frameworks



© 2016, 2020 IBM Corporation

ESB Capabilities

• In general, an ESB should provide the following functionality:

– Transport Invocation – protocols and data binding

– Data routing and transformation – Message routing patterns

– Platform mediation – Language-specific adapters and mapping

– Messaging – Message oriented middleware patterns

– Orchestration – Business process coordination

– QoS – Security, guaranteed delivery, transactions

– Administration – Monitoring, operational administration

– Platform agnosticism – Loose coupling, support for disparity

– Data validation – Schema and/or canonical data validation
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Examples of ESBs
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Message oriented middleware

• If you don’t need a full ESB, you may still be making use of (and paying for) commercial messaging

• Technically, MOM is any platform that sends and receives messages between distributed applications

• Commercial versions include IBM MQ, Amazon SQS, and Oracle AQ

• This pattern allows for asynchronous processing, and normalization of data exchanges

• Clients connect to a messaging provider, and send and receive messages via that provider
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What’s It Good For?

• Data normalization makes it a lot easier for disparate applications to trade information

• Just like in web services, heterogeneous systems can agree on a data “contract” and send and receive 

data in that format

• All the application needs is a client compatible with the messaging provider

• And since messages are allowed to queue up on the message provider, it also makes it very easy to 

perform asynchronous processing

• Most message providers offer additional benefits, like guaranteed delivery, options for traffic shaping, high 

availability, and scaling
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Commercial Messaging Software

• Looking at the role fulfilled by an ESB platform, it is fair to say that these technologies can quickly become 

deeply embedded in your infrastructure

• In fact, at first blush, many businesses just assume that they are “stuck with” their ESB, messaging, and/or 

otherwise middleware and integration-related pieces of software

• Commercial vendors understand the importance of this integration power as well as the ”stickiness,” and 

so these technologies, things like TIBCO, WebSphere MQ, Oracle AQ, etc, tend to be expensive

• Remember, though, that these technologies are necessarily loosely integrated -- the SOA-like 

recommended architectures that called for them in the first place also calls for modularity and ease of 

replaceability

• So all you really need to do is make sure that whatever solution you choose to replace your existing 

commercial ESB or messaging solution can recreate the same endpoint contracts – i.e. the same REST 

messages, SOAP WSDLs, etc…

• That way, related systems will ideally never even notice that you swapped out the endpoint provider!
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Meet:  Some Really Good, Really Free Solutions!

• Apache ActiveMQ is a JMS implementation, and can help with both federation of systems and 

asynchronous processing

• Apache Kafka is a high-throughput streaming event engine suitable for very large datasets

• So…
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Use cases beyond the traditional
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What is Kafka?
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What’s Kafka?

• Where ActiveMQ is a traditional message broker focused on flexible and wide integration of 

heterogeneous systems, Kafka is a high-throughput streaming event system meant for heavy traffic

• Organizations comfortable with both technologies will find that most of their conceivable messaging 

needs will be met by understanding the traditional messaging landscape as well as emerging world of 

streaming integration

• Both Kafka and ActiveMQ free and open source under the Apache 2.0 license, meaning that they are 

permissive as well and are safe for large enterprises to not only use but also modify if desired

• Kafka was originally conceived at LinkedIn and was built with that kind of scale in mind, so for most 

businesses in need of a data streaming solution, Kafka’s architecture and ability to scale will be more 

than enough

• Kafka has a wide library of clients making it easy to integrate with, and although not as many features 

and traffic shaping patterns are available as in ActiveMQ, Kafka integrates seamlessly with Camel and as 

such can be folded naturally into a full middleware integration stack  
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What’s Kafka

• Kafka was built to allow downstream analytics and processing platforms to look at data in a way that 

allows for correlation, cross referencing, and other complex operations

• Traditional messaging systems focus on a single message, and the quality and mechanisms 

surrounding the delivery of that message

• Kafka is more about making sure that large amounts of data, potentially over a series of time, can be 

received flexibly and, where necessary, in historically-tagged chunks as opposed to just one message 

at a time

• Kafka does in fact allow for traditional queuing as well as some other patterns, but, its primary use most 

closely resembles that of a Topic pattern in traditional messaging

• A single Topic will have multiple interested subscribers receiving streams of data from producer 

systems

• Kafka virtualizes these Topics by breaking them into Partitions, allowing for even greater horizontal 

scale  
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Streaming vs. Traditional Message Queuing

• Primarily, the difference comes down to how messages are processed by receiving systems

• In traditional message queueing (not topics), a single message is processed at a time, even if that 

payload contains a lot of data:

Consumer 

A

Consumer 

B

Consumer 

C
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Streaming or Stream Processing

• Streaming differs in that chunks of data, or series of messages tend to be processed or at least 

referenced at a time

• Historical data is usually an option as well, and consumers can time slice the data they want to receive

Consumer 

A

Consumer 

B

Consumer 

C
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Partitions

• Kafka stores streamed data in Partitions, which are on-disk logical groupings of writes from Producing 

applications

• Notice that “new” writes are written to the end of these partitions, which is much different from ActiveMQ, 

and other traditional FIFO messaging solutions

• Consuming applications will be able to subscribe to a single partition

• This allows for excellent redundancy in retaining the data and good load balancing across storage

• It also provides a straightforward mechanism for achieving horizontal scale

0 1 2 3 4 5 6

0 1 2 3 4 5Partition 0

Old Data New Data

Writes
Partition 1

Partition n 0 1 2 3 4 5 6

Kafka Topic
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Zookeeper 

• Apache recognized there was a need for distributed configuration of applications

• Distributed applications, like ones created with ActiveMQ, often require a lot of 
additonal work to share a common configuration or synchronize local data stores

• All kinds of problems present themselves when dealing with distributed applications in 
high-traffic environments

• Race conditions

• General bugs

• OS-level limitations 

• File sharing problems

• Human Error in configuration

• Zookeeper attempts to fix this issue by providing a decentralized network of 
configuration providers
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Zookeeper 

• Let’s be honest, sharing configuration data dynamically between applications is 
difficult

• So we tend to slack off in these areas

• We often provide very brittle configuration

• If we want to change or upgrade the way brokers are handled, this usually means a 
change to every single broker in our arsenal

• Some messaging systems require hundreds of brokers

• Attempting to upgrade all of their configuration by-hand is slow and prone to 
errors

• Zookeeper takes configuration storage to the next level, by also providing failover 
and redundancy in its sharing environment

• So a single Zookeeper instance failing will not prevent the entire messaging 
application from receiving messages
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Industry interest in Kafka

Analysis of key industries using Kafka. 

(Source: https://kafka.apache.org)

Analysis is based on the 10 largest 

companies in each sector.
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Hybrid Multicloud

• What needs drove Zookeeper, ActiveMQ, 

Kafka?  

– Data federation among heterogeneous 

systems

– Edge computing

– Distributed computing

– Large data workloads
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Image source: https://www.confluent.io/blog/build-deploy-scalable-machine-learning-production-apache-kafka/

IBM i
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Powered by Kafka (https://kafka.apache.org/powered-by)
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Obtaining Kafka

• Kafka is maintained and distributed from its top-level community home, https://kafka.apache.org:

https://kafka.apache.org/


© 2016, 2020 IBM Corporation

Deploying Kafka

• https://ibmi-oss-docs.readthedocs.io/en/latest/kafka/README.html#deploying-kafka-on-ibm-i

• Steps are simple:

1. Download

2. Extract

3. Set up Java environment

4. Start Zookeeper

5. Start Kafka

https://ibmi-oss-docs.readthedocs.io/en/latest/kafka/README.html#deploying-kafka-on-ibm-i
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Ways to stream/consume Kafka data?

• https://ibmi-oss-docs.readthedocs.io/en/latest/kafka/README.html

• Db2 Triggers and Apache Camel: stream events in real-time

• Kafka Connect JDBC Source connector: Simple, polling-based technique

• InfoSphere Data Replication and the CDC Replication Engine for Kafka

• Native ILE Kafka client (unsupported): call Kafka functions directly from ILE programs.

• Confluent Platform

» ksqlDB, which provides an SQL interface 

» Kafka REST APIs, which provide a REST interface

https://ibmi-oss-docs.readthedocs.io/en/latest/kafka/README.html
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ksqlDB (image credit:  ksqldb.io)

• "The database purpose-built for stream processing applications."

• Kafka-native database
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ksqlDB queries (image credit: ksqldb.io)
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ksqlDB queries (image credit: ksqldb.io)
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Kafka Admin/Visualizer tools

• All the necessary stuff is bundled with Kafka itself

• There are plenty of tools out there, both commercial and open source

• One handy open source one we found (screenshot on next slide)

https://github.com/manasb-uoe/kafka-visualizer

• Fork you can run on IBM i

https://github.com/ThePrez/kafka-visualizer

G
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What is Camel?
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Apache Camel

• Has modules/adapters for:

– Spring Boot

– OSGi

– Kafka

– AWS

– ActiveMQ

– MongoDB

– Facebook/Twitter

– IoT

– Google Sheets

– Git

– GraphQL

– REST

– Nagios

– PDFs

– WordPress

– Twilio

– TONS more!!

– …. Including IBM i via JT400!

https://camel.apache.org/components/latest/jt400-

component.html

• Dubbed “the swiss knife of integration”

• Learn about Enterprise Integration Patterns: 

https://camel.apache.org/components/latest/eips/enterprise-

integration-patterns.html

https://camel.apache.org/components/latest/jt400-component.html
https://camel.apache.org/components/latest/jt400-component.html
https://camel.apache.org/components/latest/eips/enterprise-integration-patterns.html
https://camel.apache.org/components/latest/eips/enterprise-integration-patterns.html
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Kafka / Camel Integration

• Much like ActiveMQ, Kafka can integrate 

seamlessly with Camel, extending its 

usability

• Whereas ActiveMQ ships with Camel built-in 

(though of course it can be decoupled), Kafka 

integrates with Camel using the camel-kafka

component

• This component is provided by the Camel 

community and distributed through its normal 

channels

• Producer and consumer capabilities are 

provided by the component

• It is highly configurable, providing all of the 

same options available in the Kafka’s Java 

client library
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Camel components

Uhm, yeah, the list isn’t gonna fit…

The point is there are a lot!
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How Does It Work?

• And, you can chain these Exchanges together – just like piping commands through UNIX – and form a 

Camel Route

• The “Out” message of a previous Exchange becomes the “In” message of a new Exchange:

P

In
Ou

t

P

In
Ou

t

P

In
Ou

t
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Interacting with Camel-JT400 Component
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Db2 Enhancements for Apache Camel

• JSON Publishing Functions provide data in a manner understood by Kafka/ActiveMQ consumers

• Data Queue Functions allow integration with queues (and therefore Apache Camel) directly from the 

database
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Data Queue to Kafka Bridge

• Same concept, different URIs

• Applied case: stream Db2 transactions to Apache Kafka
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Consume IoT Data? No Problem!
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Consume IoT Data? No Problem!
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Control IoT Devices? No Problem!
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Control IoT Devices? No Problem!

*MSGQ Camel

IBM i SNDMSG Command
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Power 10 Proof point
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Power 10 Proof Point

https://developer.ibm.com/tutorials/power10-business-inferencing-at-scale-with-mma/
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Power 10 Proof Point
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P10 Proof Point
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Closing thoughts
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Where to get help?

• Community

– https://camel.zulipchat.com/

– https://kafka.apache.org/contact

• Professional Services

– IBM Systems Lab Services

o Contact at ibmsls@us.ibm.com or your local Lab Services team

– IBM Techology Support Services (TSS)

o Contact jgorzins@us.ibm.com and Randal.Wilson@ibm.com or your local TSS representative

https://camel.zulipchat.com/
https://kafka.apache.org/contact
mailto:jgorzins@us.ibm.com
mailto:Randal.Wilson@ibm.com
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Resources

• IBM i RPMs (RedHat Technology we use for building/distributing)

– http://ibm.biz/ibmi-rpms

• IBM i Open Source Support

– http://ibm.biz/ibmi-oss-support

• Jesse Gorzinski’s blog

– http://ibm.biz/open-your-i

– https://ibmsystemsmag.com/Power-Systems/06/2020/common-open-source-questions-answered

• Open Source Examples

– http://github.com/IBM/ibmi-oss-examples

• IBM i customer stories

– http://ibm.biz/ibmistories

• Community chat

– http://ibm.biz/ibmioss-chat (join at http://ibm.biz/ibmioss-chat-join )

• Jesse

– jgorzins@us.ibm.com

– http://twitter.com/IBMJesseG

http://ibm.biz/ibmi-rpms
http://ibm.biz/ibmi-oss-support
http://ibm.biz/open-your-i
https://ibmsystemsmag.com/Power-Systems/06/2020/common-open-source-questions-answered
http://github.com/IBM/ibmi-oss-examples
http://ibm.biz/ibmistories
http://ibm.biz/ibmioss-chat
http://ibm.biz/ibmioss-chat-join
mailto:jgorzins@us.ibm.com
http://twitter.com/IBMJesseG
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Kafka and IBM i?

• Yes, of course!

– It makes sense

– IBM can help deploy

– IBM can provide support
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The Hybrid Approach

IBM i
World’s Best RDBMS

COBOL+RPG

Lowest cost of ownership 

(TCO)

Reliability, securability, 

efficiency

Protection of investment

Open Source
Artificial Intelligence

Quantum Computing

Microservices / APIs

DevOps

Internet of Things

Web Technologies
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This document was developed for IBM offerings in the United States as of the date of publication.  IBM may not make these offerings available 

in other countries, and the information is subject to change without notice. Consult your local IBM business contact for information on the IBM 

offerings available in your area.

Information in this document concerning non-IBM products was obtained from the suppliers of these products or other public sources.  

Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

IBM may have patents or pending patent applications covering subject matter in this document.  The furnishing of this document does not give 

you any license to these patents.  Send license inquires, in writing, to IBM Director of Licensing, IBM Corporation, New Castle Drive, Armonk, 

NY 10504-1785 USA. 

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives 

only. 

The information contained in this document has not been submitted to any formal IBM test and is provided "AS IS" with no warranties or 

guarantees either expressed or implied.

All examples cited or described in this document are presented as illustrations of  the manner in which some IBM products can be used and 

the results that may be achieved.  Actual environmental costs and performance characteristics will vary depending on individual client 

configurations and conditions.

IBM Global Financing offerings are provided through IBM Credit Corporation in the United States and other IBM subsidiaries and divisions 

worldwide to qualified commercial and government clients.  Rates are based on a client's credit rating, financing terms, offering type, 

equipment type and options, and may vary by country.  Other restrictions may apply.  Rates and offerings are subject to change, extension or 

withdrawal without notice.

IBM is not responsible for printing errors in this document that result in pricing or information inaccuracies.

All prices shown are IBM's United States suggested list prices and are subject to change without notice; reseller prices may vary.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

Any performance data contained in this document was determined in a controlled environment.  Actual results may vary significantly and are 

dependent on many factors including system hardware configuration and software design and configuration.  Some measurements quoted in 

this document may have been made on development-level systems.  There is no guarantee these measurements will be the same on 

generally-available systems.  Some measurements quoted in this document may have been estimated through extrapolation.  Users of this 

document should verify the applicable data for their specific environment.  

Revised September 26, 2006
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