
© 2016, 2020 IBM Corporation

Kafka and IBM i

Presented by:
Jesse Gorzinski
jgorzins@us.ibm.com
Twitter: @IBMJesseG

mailto:jgorzins@us.ibm.com

© 2016, 2020 IBM Corporation

About your speaker

• Business Architect of Open Source Technologies

• Reach me at:

– jgorzins@us.ibm.com

– Twitter: @IBMJesseG

mailto:jgorzins@us.ibm.com

© 2016, 2020 IBM Corporation

Justin has over 20 years’ experience

working in various software roles and is

an outspoken free software evangelist,

delivering enterprise solutions and

community education on databases,

integration work, architecture, and

technical leadership.

He is currently the Field CTO and Chief

Evangelist at Gradle Enterprises

Justin Reock

© 2016, 2020 IBM Corporation

Agenda

Enterprise Messaging Systems: What's the big deal?

What is Kafka?

What is Camel?

Database/Kafka example

© 2016, 2020 IBM Corporation

Enterprise Messaging Systems: What's
the big deal?

© 2016, 2021 IBM Corporation

Quick Exercise…

• I’m going to show you three slides

• They all have something in common…

• See if you can figure out what it is!

© 2016, 2021 IBM Corporation

The Chupacabra

© 2016, 2021 IBM Corporation

A Magical Unicorn…

© 2016, 2020 IBM Corporation

9 | Should You Be Paying For Middleware? perforce.com

B
ill

in
g

Fu
lf

ill
m

en
t

C
R

M
E-C

o
m

m
erce

A Fully Homogeneous Enterprise Landscape…

© 2016, 2020 IBM Corporation

10 | Should You Be Paying For Middleware? perforce.com

B
ill

in
g

Fu
lf

ill
m

en
t

C
R

M
E-C

o
m

m
erce

A Fully Homogeneous Enterprise Landscape…

DOESN'T
EXIST!!

© 2016, 2020 IBM Corporation

Traditional Messaging Middleware

• Applications often have a need to send information back and forth to one another in a normalized fashion

• Before the advent of messaging systems, it was often difficult if not impossible to “federate” applications

written in disparate languages or residing on heterogeneous platforms

• For instance, JMS, the Java Messaging Service, arose out of a growing need to federate very different

systems with each other

Java Application IBM i Application

© 2016, 2020 IBM Corporation

A Word on ESBs

• Perhaps the most recognizable solution for this problem of heterogeneous systems integration is the

pattern of an Enterprise Service Bus or ESB

• An ESB is an architectural design pattern that focuses on providing federation between systems using a

common runtime

• Ideally, a Service Bus will provide loosely coupled endpoints to which various, heterogeneous systems

can communicate with one another via their native frameworks

• So, for instance, a .NET SOAP-driven application should be able to send data along the bus, which could

be received by, say, a Java-based JMS destination

• The ESB will provide payload and protocol normalization to facilitate that communication

• Loose coupling will ensure that services can remain unaware of federated services’ languages and

frameworks

© 2016, 2020 IBM Corporation

ESB Capabilities

• In general, an ESB should provide the following functionality:

– Transport Invocation – protocols and data binding

– Data routing and transformation – Message routing patterns

– Platform mediation – Language-specific adapters and mapping

– Messaging – Message oriented middleware patterns

– Orchestration – Business process coordination

– QoS – Security, guaranteed delivery, transactions

– Administration – Monitoring, operational administration

– Platform agnosticism – Loose coupling, support for disparity

– Data validation – Schema and/or canonical data validation

© 2016, 2020 IBM Corporation

Examples of ESBs

© 2016, 2020 IBM Corporation

Message oriented middleware

• If you don’t need a full ESB, you may still be making use of (and paying for) commercial messaging

• Technically, MOM is any platform that sends and receives messages between distributed applications

• Commercial versions include IBM MQ, Amazon SQS, and Oracle AQ

• This pattern allows for asynchronous processing, and normalization of data exchanges

• Clients connect to a messaging provider, and send and receive messages via that provider

© 2016, 2020 IBM Corporation

What’s It Good For?

• Data normalization makes it a lot easier for disparate applications to trade information

• Just like in web services, heterogeneous systems can agree on a data “contract” and send and receive

data in that format

• All the application needs is a client compatible with the messaging provider

• And since messages are allowed to queue up on the message provider, it also makes it very easy to

perform asynchronous processing

• Most message providers offer additional benefits, like guaranteed delivery, options for traffic shaping, high

availability, and scaling

© 2016, 2020 IBM Corporation

Commercial Messaging Software

• Looking at the role fulfilled by an ESB platform, it is fair to say that these technologies can quickly become

deeply embedded in your infrastructure

• In fact, at first blush, many businesses just assume that they are “stuck with” their ESB, messaging, and/or

otherwise middleware and integration-related pieces of software

• Commercial vendors understand the importance of this integration power as well as the ”stickiness,” and

so these technologies, things like TIBCO, WebSphere MQ, Oracle AQ, etc, tend to be expensive

• Remember, though, that these technologies are necessarily loosely integrated -- the SOA-like

recommended architectures that called for them in the first place also calls for modularity and ease of

replaceability

• So all you really need to do is make sure that whatever solution you choose to replace your existing

commercial ESB or messaging solution can recreate the same endpoint contracts – i.e. the same REST

messages, SOAP WSDLs, etc…

• That way, related systems will ideally never even notice that you swapped out the endpoint provider!

© 2016, 2020 IBM Corporation

Meet: Some Really Good, Really Free Solutions!

• Apache ActiveMQ is a JMS implementation, and can help with both federation of systems and

asynchronous processing

• Apache Kafka is a high-throughput streaming event engine suitable for very large datasets

• So…

© 2016, 2020 IBM Corporation

Use cases beyond the traditional

© 2016, 2020 IBM Corporation

What is Kafka?

© 2016, 2020 IBM Corporation

What’s Kafka?

• Where ActiveMQ is a traditional message broker focused on flexible and wide integration of

heterogeneous systems, Kafka is a high-throughput streaming event system meant for heavy traffic

• Organizations comfortable with both technologies will find that most of their conceivable messaging

needs will be met by understanding the traditional messaging landscape as well as emerging world of

streaming integration

• Both Kafka and ActiveMQ free and open source under the Apache 2.0 license, meaning that they are

permissive as well and are safe for large enterprises to not only use but also modify if desired

• Kafka was originally conceived at LinkedIn and was built with that kind of scale in mind, so for most

businesses in need of a data streaming solution, Kafka’s architecture and ability to scale will be more

than enough

• Kafka has a wide library of clients making it easy to integrate with, and although not as many features

and traffic shaping patterns are available as in ActiveMQ, Kafka integrates seamlessly with Camel and as

such can be folded naturally into a full middleware integration stack

© 2016, 2020 IBM Corporation

What’s Kafka

• Kafka was built to allow downstream analytics and processing platforms to look at data in a way that

allows for correlation, cross referencing, and other complex operations

• Traditional messaging systems focus on a single message, and the quality and mechanisms

surrounding the delivery of that message

• Kafka is more about making sure that large amounts of data, potentially over a series of time, can be

received flexibly and, where necessary, in historically-tagged chunks as opposed to just one message

at a time

• Kafka does in fact allow for traditional queuing as well as some other patterns, but, its primary use most

closely resembles that of a Topic pattern in traditional messaging

• A single Topic will have multiple interested subscribers receiving streams of data from producer

systems

• Kafka virtualizes these Topics by breaking them into Partitions, allowing for even greater horizontal

scale

© 2016, 2020 IBM Corporation

Streaming vs. Traditional Message Queuing

• Primarily, the difference comes down to how messages are processed by receiving systems

• In traditional message queueing (not topics), a single message is processed at a time, even if that

payload contains a lot of data:

Consumer

A

Consumer

B

Consumer

C

© 2016, 2020 IBM Corporation

Streaming or Stream Processing

• Streaming differs in that chunks of data, or series of messages tend to be processed or at least

referenced at a time

• Historical data is usually an option as well, and consumers can time slice the data they want to receive

Consumer

A

Consumer

B

Consumer

C

© 2016, 2020 IBM Corporation

Partitions

• Kafka stores streamed data in Partitions, which are on-disk logical groupings of writes from Producing

applications

• Notice that “new” writes are written to the end of these partitions, which is much different from ActiveMQ,

and other traditional FIFO messaging solutions

• Consuming applications will be able to subscribe to a single partition

• This allows for excellent redundancy in retaining the data and good load balancing across storage

• It also provides a straightforward mechanism for achieving horizontal scale

0 1 2 3 4 5 6

0 1 2 3 4 5Partition 0

Old Data New Data

Writes
Partition 1

Partition n 0 1 2 3 4 5 6

Kafka Topic

© 2016, 2020 IBM Corporation

Zookeeper

• Apache recognized there was a need for distributed configuration of applications

• Distributed applications, like ones created with ActiveMQ, often require a lot of
additonal work to share a common configuration or synchronize local data stores

• All kinds of problems present themselves when dealing with distributed applications in
high-traffic environments

• Race conditions

• General bugs

• OS-level limitations

• File sharing problems

• Human Error in configuration

• Zookeeper attempts to fix this issue by providing a decentralized network of
configuration providers

© 2016, 2020 IBM Corporation

Zookeeper

• Let’s be honest, sharing configuration data dynamically between applications is
difficult

• So we tend to slack off in these areas

• We often provide very brittle configuration

• If we want to change or upgrade the way brokers are handled, this usually means a
change to every single broker in our arsenal

• Some messaging systems require hundreds of brokers

• Attempting to upgrade all of their configuration by-hand is slow and prone to
errors

• Zookeeper takes configuration storage to the next level, by also providing failover
and redundancy in its sharing environment

• So a single Zookeeper instance failing will not prevent the entire messaging
application from receiving messages

© 2016, 2020 IBM Corporation

Industry interest in Kafka

Analysis of key industries using Kafka.

(Source: https://kafka.apache.org)

Analysis is based on the 10 largest

companies in each sector.

© 2016, 2020 IBM Corporation

Hybrid Multicloud

• What needs drove Zookeeper, ActiveMQ,

Kafka?

– Data federation among heterogeneous

systems

– Edge computing

– Distributed computing

– Large data workloads

© 2016, 2020 IBM Corporation

Image source: https://www.confluent.io/blog/build-deploy-scalable-machine-learning-production-apache-kafka/

IBM i

© 2016, 2020 IBM Corporation

Powered by Kafka (https://kafka.apache.org/powered-by)

© 2016, 2020 IBM Corporation

Obtaining Kafka

• Kafka is maintained and distributed from its top-level community home, https://kafka.apache.org:

https://kafka.apache.org/

© 2016, 2020 IBM Corporation

Deploying Kafka

• https://ibmi-oss-docs.readthedocs.io/en/latest/kafka/README.html#deploying-kafka-on-ibm-i

• Steps are simple:

1. Download

2. Extract

3. Set up Java environment

4. Start Zookeeper

5. Start Kafka

https://ibmi-oss-docs.readthedocs.io/en/latest/kafka/README.html#deploying-kafka-on-ibm-i

© 2016, 2020 IBM Corporation

Ways to stream/consume Kafka data?

• https://ibmi-oss-docs.readthedocs.io/en/latest/kafka/README.html

• Db2 Triggers and Apache Camel: stream events in real-time

• Kafka Connect JDBC Source connector: Simple, polling-based technique

• InfoSphere Data Replication and the CDC Replication Engine for Kafka

• Native ILE Kafka client (unsupported): call Kafka functions directly from ILE programs.

• Confluent Platform

» ksqlDB, which provides an SQL interface

» Kafka REST APIs, which provide a REST interface

https://ibmi-oss-docs.readthedocs.io/en/latest/kafka/README.html

© 2016, 2020 IBM Corporation

ksqlDB (image credit: ksqldb.io)

• "The database purpose-built for stream processing applications."

• Kafka-native database

© 2016, 2020 IBM Corporation

ksqlDB queries (image credit: ksqldb.io)

© 2016, 2020 IBM Corporation

ksqlDB queries (image credit: ksqldb.io)

© 2016, 2020 IBM Corporation

Kafka Admin/Visualizer tools

• All the necessary stuff is bundled with Kafka itself

• There are plenty of tools out there, both commercial and open source

• One handy open source one we found (screenshot on next slide)

https://github.com/manasb-uoe/kafka-visualizer

• Fork you can run on IBM i

https://github.com/ThePrez/kafka-visualizer

G

© 2016, 2020 IBM Corporation

G

© 2016, 2020 IBM Corporation

What is Camel?

© 2016, 2020 IBM Corporation

Apache Camel

• Has modules/adapters for:

– Spring Boot

– OSGi

– Kafka

– AWS

– ActiveMQ

– MongoDB

– Facebook/Twitter

– IoT

– Google Sheets

– Git

– GraphQL

– REST

– Nagios

– PDFs

– WordPress

– Twilio

– TONS more!!

– …. Including IBM i via JT400!

https://camel.apache.org/components/latest/jt400-

component.html

• Dubbed “the swiss knife of integration”

• Learn about Enterprise Integration Patterns:

https://camel.apache.org/components/latest/eips/enterprise-

integration-patterns.html

https://camel.apache.org/components/latest/jt400-component.html
https://camel.apache.org/components/latest/jt400-component.html
https://camel.apache.org/components/latest/eips/enterprise-integration-patterns.html
https://camel.apache.org/components/latest/eips/enterprise-integration-patterns.html

© 2016, 2020 IBM Corporation

Kafka / Camel Integration

• Much like ActiveMQ, Kafka can integrate

seamlessly with Camel, extending its

usability

• Whereas ActiveMQ ships with Camel built-in

(though of course it can be decoupled), Kafka

integrates with Camel using the camel-kafka

component

• This component is provided by the Camel

community and distributed through its normal

channels

• Producer and consumer capabilities are

provided by the component

• It is highly configurable, providing all of the

same options available in the Kafka’s Java

client library

© 2016, 2020 IBM Corporation

Camel components

Uhm, yeah, the list isn’t gonna fit…

The point is there are a lot!

© 2016, 2020 IBM Corporation

How Does It Work?

• And, you can chain these Exchanges together – just like piping commands through UNIX – and form a

Camel Route

• The “Out” message of a previous Exchange becomes the “In” message of a new Exchange:

P

In
Ou

t

P

In
Ou

t

P

In
Ou

t

© 2016, 2020 IBM Corporation

Interacting with Camel-JT400 Component

© 2016, 2020 IBM Corporation

Db2 Enhancements for Apache Camel

• JSON Publishing Functions provide data in a manner understood by Kafka/ActiveMQ consumers

• Data Queue Functions allow integration with queues (and therefore Apache Camel) directly from the

database

© 2016, 2020 IBM Corporation

Data Queue to Kafka Bridge

• Same concept, different URIs

• Applied case: stream Db2 transactions to Apache Kafka

© 2016, 2020 IBM Corporation

Consume IoT Data? No Problem!

© 2016, 2020 IBM Corporation

Consume IoT Data? No Problem!

© 2016, 2020 IBM Corporation

Control IoT Devices? No Problem!

© 2016, 2020 IBM Corporation

Control IoT Devices? No Problem!

*MSGQ Camel

IBM i SNDMSG Command

© 2016, 2020 IBM Corporation

Power 10 Proof point

© 2016, 2020 IBM Corporation

Power 10 Proof Point

https://developer.ibm.com/tutorials/power10-business-inferencing-at-scale-with-mma/

© 2016, 2020 IBM Corporation

Power 10 Proof Point

© 2016, 2020 IBM Corporation

P10 Proof Point

© 2016, 2020 IBM Corporation

Closing thoughts

© 2016, 2020 IBM Corporation

Where to get help?

• Community

– https://camel.zulipchat.com/

– https://kafka.apache.org/contact

• Professional Services

– IBM Systems Lab Services

o Contact at ibmsls@us.ibm.com or your local Lab Services team

– IBM Techology Support Services (TSS)

o Contact jgorzins@us.ibm.com and Randal.Wilson@ibm.com or your local TSS representative

https://camel.zulipchat.com/
https://kafka.apache.org/contact
mailto:jgorzins@us.ibm.com
mailto:Randal.Wilson@ibm.com

© 2016, 2020 IBM Corporation

Resources

• IBM i RPMs (RedHat Technology we use for building/distributing)

– http://ibm.biz/ibmi-rpms

• IBM i Open Source Support

– http://ibm.biz/ibmi-oss-support

• Jesse Gorzinski’s blog

– http://ibm.biz/open-your-i

– https://ibmsystemsmag.com/Power-Systems/06/2020/common-open-source-questions-answered

• Open Source Examples

– http://github.com/IBM/ibmi-oss-examples

• IBM i customer stories

– http://ibm.biz/ibmistories

• Community chat

– http://ibm.biz/ibmioss-chat (join at http://ibm.biz/ibmioss-chat-join)

• Jesse

– jgorzins@us.ibm.com

– http://twitter.com/IBMJesseG

http://ibm.biz/ibmi-rpms
http://ibm.biz/ibmi-oss-support
http://ibm.biz/open-your-i
https://ibmsystemsmag.com/Power-Systems/06/2020/common-open-source-questions-answered
http://github.com/IBM/ibmi-oss-examples
http://ibm.biz/ibmistories
http://ibm.biz/ibmioss-chat
http://ibm.biz/ibmioss-chat-join
mailto:jgorzins@us.ibm.com
http://twitter.com/IBMJesseG

© 2016, 2020 IBM Corporation

Kafka and IBM i?

• Yes, of course!

– It makes sense

– IBM can help deploy

– IBM can provide support

© 2016, 2020 IBM Corporation

The Hybrid Approach

IBM i
World’s Best RDBMS

COBOL+RPG

Lowest cost of ownership

(TCO)

Reliability, securability,

efficiency

Protection of investment

Open Source
Artificial Intelligence

Quantum Computing

Microservices / APIs

DevOps

Internet of Things

Web Technologies

© 2016, 2020 IBM Corporation

Special notices

61

This document was developed for IBM offerings in the United States as of the date of publication. IBM may not make these offerings available

in other countries, and the information is subject to change without notice. Consult your local IBM business contact for information on the IBM

offerings available in your area.

Information in this document concerning non-IBM products was obtained from the suppliers of these products or other public sources.

Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give

you any license to these patents. Send license inquires, in writing, to IBM Director of Licensing, IBM Corporation, New Castle Drive, Armonk,

NY 10504-1785 USA.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives

only.

The information contained in this document has not been submitted to any formal IBM test and is provided "AS IS" with no warranties or

guarantees either expressed or implied.

All examples cited or described in this document are presented as illustrations of the manner in which some IBM products can be used and

the results that may be achieved. Actual environmental costs and performance characteristics will vary depending on individual client

configurations and conditions.

IBM Global Financing offerings are provided through IBM Credit Corporation in the United States and other IBM subsidiaries and divisions

worldwide to qualified commercial and government clients. Rates are based on a client's credit rating, financing terms, offering type,

equipment type and options, and may vary by country. Other restrictions may apply. Rates and offerings are subject to change, extension or

withdrawal without notice.

IBM is not responsible for printing errors in this document that result in pricing or information inaccuracies.

All prices shown are IBM's United States suggested list prices and are subject to change without notice; reseller prices may vary.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are

dependent on many factors including system hardware configuration and software design and configuration. Some measurements quoted in

this document may have been made on development-level systems. There is no guarantee these measurements will be the same on

generally-available systems. Some measurements quoted in this document may have been estimated through extrapolation. Users of this

document should verify the applicable data for their specific environment.

Revised September 26, 2006

© 2016, 2020 IBM Corporation

Special notices (cont.)

62

IBM, the IBM logo, ibm.com AIX, AIX (logo), AIX 5L, AIX 6 (logo), AS/400, BladeCenter, Blue Gene, ClusterProven, DB2, ESCON, i5/OS, i5/OS (logo), IBM Business

Partner (logo), IntelliStation, LoadLeveler, Lotus, Lotus Notes, Notes, Operating System/400, OS/400, PartnerLink, PartnerWorld, PowerPC, pSeries, Rational, RISC

System/6000, RS/6000, THINK, Tivoli, Tivoli (logo), Tivoli Management Environment, WebSphere, xSeries, z/OS, zSeries, Active Memory, Balanced Warehouse,

CacheFlow, Cool Blue, IBM Systems Director VMControl, pureScale, TurboCore, Chiphopper, Cloudscape, DB2 Universal Database, DS4000, DS6000, DS8000,

EnergyScale, Enterprise Workload Manager, General Parallel File System, , GPFS, HACMP, HACMP/6000, HASM, IBM Systems Director Active Energy Manager,

iSeries, Micro-Partitioning, POWER, PowerExecutive, PowerVM, PowerVM (logo), PowerHA, Power Architecture, Power Everywhere, Power Family, POWER

Hypervisor, Power Systems, Power Systems (logo), Power Systems Software, Power Systems Software (logo), POWER2, POWER3, POWER4, POWER4+,

POWER5, POWER5+, POWER6, POWER6+, POWER7, System i, System p, System p5, System Storage, System z, TME 10, Workload Partitions Manager and X-

Architecture are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. If these and other

IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common

law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries.

A full list of U.S. trademarks owned by IBM may be found at: http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

AltiVec is a trademark of Freescale Semiconductor, Inc.

AMD Opteron is a trademark of Advanced Micro Devices, Inc.

InfiniBand, InfiniBand Trade Association and the InfiniBand design marks are trademarks and/or service marks of the InfiniBand Trade Association.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of Government

Commerce.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries or both.

Microsoft, Windows and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries or both.

NetBench is a registered trademark of Ziff Davis Media in the United States, other countries or both.

SPECint, SPECfp, SPECjbb, SPECweb, SPECjAppServer, SPEC OMP, SPECviewperf, SPECapc, SPEChpc, SPECjvm, SPECmail, SPECimap and SPECsfs are

trademarks of the Standard Performance Evaluation Corp (SPEC).

The Power Architecture and Power.org wordmarks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

TPC-C and TPC-H are trademarks of the Transaction Performance Processing Council (TPPC).

UNIX is a registered trademark of The Open Group in the United States, other countries or both.

Other company, product and service names may be trademarks or service marks of others.

Revised December 2, 2010

	Default Section
	Slide 1: Kafka and IBM i
	Slide 2: About your speaker
	Slide 3: Justin Reock
	Slide 4: Agenda
	Slide 5: Enterprise Messaging Systems: What's the big deal?
	Slide 6: Quick Exercise…
	Slide 7: The Chupacabra
	Slide 8: A Magical Unicorn…
	Slide 9: A Fully Homogeneous Enterprise Landscape…
	Slide 10: A Fully Homogeneous Enterprise Landscape…
	Slide 11: Traditional Messaging Middleware
	Slide 12: A Word on ESBs
	Slide 13: ESB Capabilities
	Slide 14: Examples of ESBs
	Slide 15: Message oriented middleware
	Slide 16: What’s It Good For?
	Slide 17: Commercial Messaging Software
	Slide 18: Meet: Some Really Good, Really Free Solutions!
	Slide 19: Use cases beyond the traditional
	Slide 20: What is Kafka?
	Slide 21: What’s Kafka?
	Slide 22: What’s Kafka
	Slide 23: Streaming vs. Traditional Message Queuing
	Slide 24: Streaming or Stream Processing
	Slide 25: Partitions
	Slide 26: Zookeeper
	Slide 27: Zookeeper
	Slide 28: Industry interest in Kafka
	Slide 29: Hybrid Multicloud
	Slide 30
	Slide 31: Powered by Kafka (https://kafka.apache.org/powered-by)
	Slide 32: Obtaining Kafka
	Slide 33: Deploying Kafka
	Slide 34: Ways to stream/consume Kafka data?
	Slide 35: ksqlDB (image credit: ksqldb.io)
	Slide 36: ksqlDB queries (image credit: ksqldb.io)
	Slide 37: ksqlDB queries (image credit: ksqldb.io)
	Slide 38: Kafka Admin/Visualizer tools
	Slide 39
	Slide 40: What is Camel?
	Slide 41: Apache Camel
	Slide 42: Kafka / Camel Integration
	Slide 43: Camel components
	Slide 44: How Does It Work?
	Slide 45: Interacting with Camel-JT400 Component
	Slide 46: Db2 Enhancements for Apache Camel
	Slide 47: Data Queue to Kafka Bridge
	Slide 48: Consume IoT Data? No Problem!
	Slide 49: Consume IoT Data? No Problem!
	Slide 50: Control IoT Devices? No Problem!
	Slide 51: Control IoT Devices? No Problem!
	Slide 52: Power 10 Proof point
	Slide 53: Power 10 Proof Point
	Slide 54: Power 10 Proof Point
	Slide 55: P10 Proof Point

	Untitled Section
	Slide 56: Closing thoughts
	Slide 57: Where to get help?
	Slide 58: Resources
	Slide 59: Kafka and IBM i?
	Slide 60: The Hybrid Approach
	Slide 61: Special notices
	Slide 62: Special notices (cont.)

