
Dimensional Modeling

QUSER Meeting

April, 2015

Session 2

Designing a Data Warehouse

• Requires a different set of thinking

• In comparison to OLTP design

• Just like quantum physics is very different to

conventional physics, it takes a while to get

your head around the conceptual differences

 OLTP Design Principles

• The primary goals for OLTP database

design:

• To support the processing of a large number of small,

atomic level transactions

• Ensure transactions are created and processed in a

consistent way

• Ensure all transactions are accounted for

• This is a microscopic view that is applied

primarily at the transaction level

 OLTP Design Principles

• The ‘rest’ of the OLTP database is designed

around the need to support the transactions

• We have developed a highly evolved set of

practices that dictate this design based on a

number of principles:

• Use 3rd Normal Form to eliminate data redundancy

• Minimize the amount of data actually stored

• Disk is (was) expensive

• Why use 10 bytes when one will do!

 OLTP Design Principles

• Transactions usually go through a lifecycle
• For example, the following steps may apply to sales order

1. Initial data entry (or data capture from some form of input)

2. Check inventory, adjust quantities. Create separate back order

3. Price, based on customer’s status/type etc.

4. Credit check - possible credit hold followed by cancellation or release

5. Release to warehouse for picking, with possible quantity adjustments

6. Confirmation & invoicing

7. Shipping - Update carrier, ship date and delivery date

8. End-of day updates – costing, postings, date stamping

• The database design needs to support all of

these stages, actions and processes

Designing a Data Warehouse

• The primary goal for data warehouse database

design:

A place where people can

easily access their data

• We don’t need to process transactions!

Designing a Data Warehouse

• What does it need to support?

• If we ask our business users:

• You know what I want, just do it!

• I want everything!

• I need these 5 reports…

• I want to be able to slice and dice…

Designing a Data Warehouse

• How do we start?

• Ideas anyone?

• We have several physical databases, with

different designs

• Do we pick one of these designs?

• Maybe we start by looking at the data

dependencies in our business

• Let’s create an E/R model!

• This works well for OLTP design

Designing a Data Warehouse

Ship Type Carrier Ship To

Contact

Customer

Pricing

Type

Pricing

Sales

Order

Sales Rep

Credit

Check

Order Item

Product

Product

Group

Product

Line

Sales Div
Sales

Region

Supplier

Designing a Data Warehouse

Ship Type Carrier Ship To

Contact

Customer

Pricing

Type

Pricing

Sales

Order

Sales Rep

Credit

Check

Order Item

Product

Product

Group

Product

Line

Sales Div
Sales

Region

Supplier

Designing a Data Warehouse

• This ‘bottom up’ approach is ideal for OLTP

but not for Data Warehouses

• OLTP design has a very structured

requirement

• Relationships, processes and dependencies

are pre-defined and fairly rigid

Designing a Data Warehouse

• This ‘bottom up’ approach is ideal for OLTP

but not for Data Warehouses

• OLTP design has a very structured

requirement

• Relationships, processes and dependencies

are pre-defined and fairly rigid

Not always!

• ERP applications are flexible

• Hugely complicates the ER model

Designing a Data Warehouse

• Let’s go back to our initial question:

• What do you need?

• You know what I want, just do it

• I want everything!

• I need these 5 reports…

• I want to be able to slice and dice…

• Maybe we asked the wrong question of the

wrong people

Designing a Data Warehouse

• If we asked the CEO what the company does?

He/she might say

We sell our products in various markets

• Then if we asked how can we know how well

we do it? He/she might answer

We measure our performance over time

Designing a Data Warehouse

We sell our products in various markets

We measure our performance over time

Duh! Obvious - right?

Designing a Data Warehouse

We sell our products in various markets

We measure our performance over time

Three fundamentals that almost

always apply to any business!

Relational Model

Ship Type Carrier Ship To

Contact

Customer

Pricing

Type

Pricing

Sales

Order

Sales Rep

Credit

Check

Order Item

Product

Product

Group

Product

Line

Sales Div
Sales

Region

Supplier

This model tells us nothing about the

product, market and time relationship

Dimensional Model

P

r

o

d

u

c

t

 T i m e

Dimensional Model

P

r

o

d

u

c

t

 T i m e

Customer

Customer Type

Demographic

Location

(SKU)

Product Line

Brand

Supplier

Date

Week

Month

Quarter

Year

Each of these Major

Dimensions have

attributes

or

sub-dimensions

• OLAP Tools

• The structures built by OLAP

tools are often referred to as

‘cubes’, suggesting 3 axes.

BI Reporting & Analytics Tools

A 3-dimensional

structure (cube) is

easy for us to

visualize.

Try visualizing a

12-dimensional

structure!

The intersection

of the axes

(dimensions)

contains a data

point (fact)

Flashback

Dimensional Model

P

r

o

d

u

c

t

 T i m e

Customer

Customer Type

Demographic

Location

SKU

Product Line

Brand

Supplier

Date

Week

Month

Quarter

Year

We can drill-down

(slice & dice)

by any combination

of attributes

P

r

o

d

u

c

t

 T i m e

Customer

Customer Type

Demographic

Location

SKU

Product Line

Brand

Supplier

Date

Week

Month

Quarter

Year

Dimensional Model

We can drill-down

(slice & dice)

by any combination

of attributes

P

r

o

d

u

c

t

 T i m e

Customer

Customer Type

Demographic

Region

SKU

Product Line

Brand

Supplier

Date

Week

Month

Quarter

Year

Unlike an OLAP

cube, each data point

is not pre-calculated.

If there are no ‘facts’

for a combination of

dimensions, there is

no data stored!

Dimensional Model

OK, we have the logical model

What does the physical model look like?

Dimensional Modeling

SALES_DETAIL

TRANS_DATE

CUSTOMER_ID

PRODUCT_ID

QUANTITY_SOLD

UNIT_PRICE

DISCOUNT

NET PRICE

SALE_VALUE

MARGIN

CUSTOMERS

CUSTOMER_ID

CUSTOMER_NAME

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

EMAIL

CUST_TYPE

CUST_GROUP

PRODUCTS

PRODUCT_ID

PROD_DESCRIPTION

PROD_UOM

WEIGHT

SUPPLIER_ID

BRAND

UNIT_COST

SELL_PRICE

DISCOUNT_CODE

LEAD_TIME

TIME

CALENDAR_DATE

YEAR_NUMBER

QTR_NUMBER

MONTH_NUMBER

DAY_NUMBER

DAY_OF_WEEK_NUMBER

DAY_OF_YEAR_NUMBER

MONTH_NAME

DAY_NAME

Fact Table

Single Key Joins

Dimension
Tables

Star Schema

Dimensional Modeling

Dimensional Modeling

• Fact Table

• Is a Highlander

• Is the central table in the star schema design

• Include all of the base Facts of a Transaction

SALES_DETAIL

TRANS_DATE

CUSTOMER_ID

PRODUCT_ID

QUANTITY_SOLD

UNIT_PRICE

DISCOUNT

NET PRICE

SALE_VALUE

MARGIN

• Dimension Tables

• Have a single Unique ID (Primary Key)

• Include all of the useful attributes of the dimension

• 1 to n Dimension Tables can exist in a star schema

CUSTOMERS

CUSTOMER_ID

CUSTOMER_NAME

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

EMAIL

CUST_TYPE

CUST_GROUP

PRODUCTS

PRODUCT_ID

PROD_DESCRIPTION

PROD_UOM

WEIGHT

SUPPLIER_ID

BRAND

UNIT_COST

SELL_PRICE

DISCOUNT_CODE

LEAD_TIME

TIME

CALENDAR_DATE

YEAR_NUMBER

QTR_NUMBER

MONTH_NUMBER

DAY_NUMBER

DAY_OF_WEEK_NUMBER

DAY_OF_YEAR_NUMBER

MONTH_NAME

DAY_NAME

Dimensional Modeling

• Dimension Tables

• Have a single Unique ID (Primary Key)

• Include all of the useful attributes of the dimension

• 1 to n Dimension Tables can exist in a star schema

CUSTOMERS

CUSTOMER_ID

CUSTOMER_NAME

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

EMAIL

CUST_TYPE

CUST_GROUP

PRODUCTS

PRODUCT_ID

PROD_DESCRIPTION

PROD_UOM

WEIGHT

SUPPLIER_ID

BRAND

UNIT_COST

SELL_PRICE

DISCOUNT_CODE

LEAD_TIME

TIME

CALENDAR_DATE

YEAR_NUMBER

QTR_NUMBER

MONTH_NUMBER

DAY_NUMBER

DAY_OF_WEEK_NUMBER

DAY_OF_YEAR_NUMBER

MONTH_NAME

DAY_NAME

Dimensional Modeling

and what about

• Store

• Salesperson

• Sale Type

• Referrer

• ??

SALES_DETAIL

TRANS_DATE

CUSTOMER_ID

PRODUCT_ID

STORE_ID

QUANTITY_SOLD

UNIT_PRICE

DISCOUNT

NET PRICE

SALE_VALUE

MARGIN

CUSTOMERS

CUSTOMER_ID

CUSTOMER_NAME

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

EMAIL

CUST_TYPE

CUST_GROUP

PRODUCTS

PRODUCT_ID

PROD_DESCRIPTION

PROD_UOM

WEIGHT

SUPPLIER_ID

BRAND

UNIT_COST

SELL_PRICE

DISCOUNT_CODE

LEAD_TIME

TIME

CALENDAR_DATE

YEAR_NUMBER

QTR_NUMBER

MONTH_NUMBER

DAY_NUMBER

DAY_OF_WEEK_NUMBER

DAY_OF_YEAR_NUMBER

MONTH_NAME

DAY_NAME

Dimensional Modeling

STORE

STORE_ID

STORE_NAME

MANAGER_ID

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

REGION

There will usually be

additional

Dimensions – not an

attribute of either

Customer or Product

SALES_DETAIL

TRANS_DATE

CUSTOMER_ID

PRODUCT_ID

STORE_ID

QUANTITY_SOLD

UNIT_PRICE

DISCOUNT

NET PRICE

SALE_VALUE

MARGIN

CUSTOMERS

CUSTOMER_ID

CUSTOMER_NAME

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

EMAIL

CUST_TYPE

CUST_GROUP

PRODUCTS

PRODUCT_ID

PROD_DESCRIPTION

PROD_UOM

WEIGHT

SUPPLIER_ID

BRAND

UNIT_COST

SELL_PRICE

DISCOUNT_CODE

LEAD_TIME

TIME

CALENDAR_DATE

YEAR_NUMBER

QTR_NUMBER

MONTH_NUMBER

DAY_NUMBER

DAY_OF_WEEK_NUMBER

DAY_OF_YEAR_NUMBER

MONTH_NAME

DAY_NAME

Dimensional Modeling

STORE

STORE_ID

STORE_NAME

MANAGER_ID

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

REGION

There may be attributes

of a dimension that in

turn have their own

attributes

SALES_DETAIL

TRANS_DATE

CUSTOMER_ID

PRODUCT_ID

STORE_ID

SALESPERSON_ID

QUANTITY_SOLD

UNIT_PRICE

DISCOUNT

NET PRICE

SALE_VALUE

MARGIN

CUSTOMERS

CUSTOMER_ID

CUSTOMER_NAME

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

EMAIL

CUST_TYPE

CUST_GROUP

PRODUCTS

PRODUCT_ID

PROD_DESCRIPTION

PROD_UOM

WEIGHT

SUPPLIER_ID

BRAND

UNIT_COST

SELL_PRICE

DISCOUNT_CODE

LEAD_TIME

TIME

CALENDAR_DATE

YEAR_NUMBER

QTR_NUMBER

MONTH_NUMBER

DAY_NUMBER

DAY_OF_WEEK_NUMBER

DAY_OF_YEAR_NUMBER

MONTH_NAME

DAY_NAME

Dimensional Modeling

STORE

STORE_ID

STORE_NAME

MANAGER_ID

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

REGION

CUST_GROUP

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

REGION

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

SUPPLIER

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

Does not

work well in

practice.

Avoid!

BRAND

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

• Sub-Attributes – Option 1

Snowflake Star Schema

SALES_DETAIL

TRANS_DATE

CUSTOMER_ID

PRODUCT_ID

STORE_ID

CUST_GROUP_ID

SUPPLIER_ID

BRAND_ID

REGION_ID

QUANTITY_SOLD

UNIT_PRICE

DISCOUNT

NET PRICE

SALE_VALUE

MARGIN

CUSTOMERS

CUSTOMER_ID

CUSTOMER_NAME

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

EMAIL

CUST_TYPE

CUST_GROUP

PRODUCTS

PRODUCT_ID

PROD_DESCRIPTION

PROD_UOM

WEIGHT

SUPPLIER_ID

BRAND

UNIT_COST

SELL_PRICE

DISCOUNT_CODE

LEAD_TIME

TIME

CALENDAR_DATE

YEAR_NUMBER

QTR_NUMBER

MONTH_NUMBER

DAY_NUMBER

DAY_OF_WEEK_NUMBER

DAY_OF_YEAR_NUMBER

MONTH_NAME

DAY_NAME

Dimensional Modeling

STORE

STORE_ID

STORE_NAME

MANAGER_ID

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

REGION

CUST_GROUP

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

REGION

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

SUPPLIER

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

BRAND

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

Implement

as

additional

Dimensions

• Sub-Attributes – Option 2

Need to

include all

IDs in the

Fact Table

PRODUCTS

PRODUCT_ID

PROD_DESCRIPTION

PROD_UOM

WEIGHT

SUPPLIER_ID

SUPPLIER_NAME

SUPPLIER_TYPE

BRAND_ID

BRAND_DESCRIPTION

UNIT_COST

SELL_PRICE

DISCOUNT_CODE

LEAD_TIME

Dimensional Modeling

• Include the sub-attributes in the same

Dimension table

• i.e. denormalize (horror of horrors!)

• This is a good approach when there are

just a few sub-attributes

• description, type for example

• Sub-Attributes – Option 3

• Fact or Attribute?

• Sometimes it may be difficult to determine whether a

numeric value is a Fact or an Attribute.

• Often we can make that decision by asking “can this

value vary by transaction”. If so it is a Fact.

• SALE_QUANTITY is obviously a Fact.

• ITEM_WEIGHT is most likely an Attribute (of Product)

• COST may not be so obvious. It may remain constant for

many weeks, but then will change. It’s probably best

treated as a Fact, rather than an Attribute of Product.

Dimensional Modeling

• The TIME Dimension

• Primary key is the smallest unit of time we measure

• Most common is DATE

• Even if our reporting is (currently) always at (e.g.)

MONTH level or higher, we still use DATE

Dimensional Modeling

TIME

CALENDAR_DATE

YEAR_NUMBER

QTR_NUMBER

MONTH_NUMBER

DAY_NUMBER

DAY_OF_WEEK_NUMBER

DAY_OF_YEAR_NUMBER

MONTH_NAME

DAY_NAME

• Let’s review some common issues

• Are they solved by Dimensional Modeling?

Dimensional Modeling

DFFTCA 3P 0

DFRTBB 5A

DFRTTB 5A

DFMNTI 1A

DFTG1B 1A

DFTG2B 1A

DFTG3B 1A

DFTG4B 1A

DFMNEE 25A

DFMNEF 11P 2

DFRERP 11P 2

DFWELF 11P 2

DFWILF 11P 2

DFWILR 11P 2

DFWILS 11P 2

DFWILT 11P 2

DFQI1W 5A

DFQ2IW 3A

DFTRES 10A

DFYT1LL 45A

DFYT1LO 12A

DFYT1LR 12A

DFRRWA 5A

DF6TYHA 1A

DFTIIPQ 1P 0

DFDRTF 6P 0

DFDRTG 6P 0

DFDRTH 6P 0

DFTPPL 1P 0

DFTINM 3P 0

DFTIR2 30A

DFTIGL 12A

DFTTDT 6P 0

DFTTED 6P 0

DFHHIJ 4P 2

DFHHIK 4P 2

DFTYHI 5P 2

DFTYIA 1A

DFTYKN 1A

DFTTWK 1A

DFTGHA 1A

DFTGSS 2A

DFTGPE 3A

DFTGYI 5P 2

T00032P

DSFTCA 3P 0

DSRTBB 5A

DSRTTB 5A

DSMNTI 1A

DSVB1B 1A

DSVB2B 1A

DSYT1LO 50A

DSYT1LR 12A

DSRRWA 5A

DS6TYHA 1A

DSTIIPQ 3P 0

DSDRTF 6P 0

DSVBHA 1A

DSVBSS 2A

DSVBPE 3A

DSVBYI 5P 2

DSMNTI 25A

DSVR2B 25A

DSVR3B 25A

DSYT2WL 12A

DSYTWLT 12A

DSRRYUQ 6A

T01045P

KSFTCA 3P 0

KSGSBB 5A

KSGDMB 5A

KSMARI 1A

KSYT3LA 50A

KSYT3LE 6P 0

KSRRWA 5A

KS6TYHA 1A

KSTIIPQ 9P 0

KSDGSF 6P 0

KSVYHA 2A

KSVFSS 2A

KSVGTE 3P 0

KSVUYI 5P 2

KSMPTI 2A

KSVR2B 2A

KSVR3B 2A

KSYTBEL 10A

KSYTPIT 10A

KSRQAU1 5A

T01046P

AGFRCA 3P 0

AGAC3EE 6P 0

AGRRWA 5A

AG6RYHA 1A

AGR22PQ 9P 0

AGDGSF 6P 0

AGVYHA 14A

AGVFSS 12A

AGVGRE 3P 0

AGVUY2 5P 2

AGMPR2 2A

AGVR2B 2A

AGVR3B 2A

AGACBEE 1A

AGACP2R 10A

AGRQAU1 5A

AGGSBB 1A

AGGDMB 8A

AGMAR2 1A

AGAC3EA 50A

AG6TTHA 1A

AGRSAPQ 6P 0

AGHISF 6P 0

R02126P

TLFTCA 3P 0

TLRTBB 5A

TLRTTB 5A

TLTNT3 1A

TLKB1B 1A

TLKB2B 1A

TLTNT3 25A

TLKR2B 25A

TLKR3B 25A

TLPT2WL 12A

TLPTWLT 12A

TLRRPUQ 6A

T03140P

FPPTWLT 12A

FPLLPUQ 6A

FPFTCA 1P 0

FPLTTB 5A

FPTNTP 1A

FPYB1B 1A

FPTNTP 25A

FPYL2B 1P 0

FPYLPB 25A

T05001P

These two columns hold
the same ‘value’ – but only

one of them is reliable

The 1st character of
this column indicates

the Sales Region,
required for report

grouping

These are dates in
*CJUL format

6 character field names
(RPG III legacy)

First 2 characters are
file prefix – so only 4
characters left for the

actual field name

Complex Operational Data

The database is designed to support
transactions, not query access!

Use of 3rd normal form to avoid
redundancy results in many tables.

Transactional data is
detailed, however most

reports will be at a
summary level

SALES_DETAIL

TRANS_DATE

CUSTOMER_ID

PRODUCT_ID

STORE_ID

QUANTITY_SOLD

UNIT_PRICE

DISCOUNT

NET PRICE

SALE_VALUE

MARGIN

CUSTOMERS

CUSTOMER_ID

CUSTOMER_NAME

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

EMAIL

CUST_TYPE

CUST_GROUP

PRODUCTS

PRODUCT_ID

PROD_DESCRIPTION

PROD_UOM

WEIGHT

SUPPLIER_ID

BRAND

UNIT_COST

SELL_PRICE

DISCOUNT_CODE

LEAD_TIME

TIME

CALENDAR_DATE

YEAR_NUMBER

QTR_NUMBER

MONTH_NUMBER

DAY_NUMBER

DAY_OF_WEEK_NUMBER

DAY_OF_YEAR_NUMBER

MONTH_NAME

DAY_NAME

Star Schema

STORE

STORE_ID

STORE_NAME

MANAGER_ID

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

REGION

Meaningful table
and column

names

Only includes the
columns we care about

Dates are true
date columns

Complex
calculations
already done

Design reduced to
only a few tables

Joins are simple
and obvious

SALES_DETAIL

TRANS_DATE

CUSTOMER_ID

PRODUCT_ID

STORE_ID

QUANTITY_SOLD

UNIT_PRICE

DISCOUNT

NET PRICE

SALE_VALUE

MARGIN

CUSTOMERS

CUSTOMER_ID

CUSTOMER_NAME

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

EMAIL

CUST_TYPE

CUST_GROUP

PRODUCTS

PRODUCT_ID

PROD_DESCRIPTION

PROD_UOM

WEIGHT

SUPPLIER_ID

BRAND

UNIT_COST

SELL_PRICE

DISCOUNT_CODE

LEAD_TIME

TIME

CALENDAR_DATE

YEAR_NUMBER

QTR_NUMBER

MONTH_NUMBER

DAY_NUMBER

DAY_OF_WEEK_NUMBER

DAY_OF_YEAR_NUMBER

MONTH_NAME

DAY_NAME

Star Schema

STORE

STORE_ID

STORE_NAME

MANAGER_ID

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

REGION

STORE

STORE_ID

STORE_NAME

MANAGER_ID

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

REGION

PRODUCTS
PRODUCT_ID

PROD_DESCRIPTION

PROD_UOM

WEIGHT

SUPPLIER_ID

BRAND

UNIT_COST

SELL_PRICE

DISCOUNT_CODE

LEAD_TIME

Issues with Operational Data

Data Quality Example

2005: Valparaiso, Indiana

Somehow a property assessment value for the home

shown above was incorrectly changed to $400M in

the property tax database

The expected property tax revenue was included in the

county budget - but the $8M property tax bill on the

house was (of course) not paid

The county had a huge revenue shortfall

The school district was force to return $2.7M

All extracurricular activities and sports were cancelled

that year

Must be addressed in the ETL

Issues with Operational Data

Poor Performance

• Large transaction table

• Many related tables

• Most reports are at a summary level

• Reports and queries are long running and consume significant

system resources

100M rows

• Example: Monthly Product Sales by Store
• Summary Fact table aggregated to YEAR/MONTH/PRODUCT/STORE

• Customer and Time dimension dropped

• Also supports queries by Brand, Region etc.

• Dimension tables can be included in multiple star schemas

SALES_SUMMARY

YEAR

MONTH

PRODUCT_ID

STORE_ID

QUANTITY_SOLD

UNIT_PRICE

DISCOUNT

NET PRICE

SALE_VALUE

MARGIN

PRODUCTS

PRODUCT_ID

PROD_DESCRIPTION

PROD_UOM

WEIGHT

SUPPLIER_ID

BRAND

UNIT_COST

SELL_PRICE

DISCOUNT_CODE

LEAD_TIME

Star Schema

STORE

STORE_ID

STORE_NAME

MANAGER_ID

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

REGION

Challenge

Multiple instances of same table, with duplicate key values

or different versions of same entity
• Incompatible data types

• Duplicates

CUSTNO CUSTNAME

1001 John Smith

1002 Mary Jones

1003 Chris Anderson

1004 David Perry

Customer File - US

CUSTNO CUSTNAME

1001 Harry Potter

1002 Jeremy Carr

1003 Penny Hayes

1004 Debbie Thornton

Customer File - Canada

CUSTID CUSTNAM

AA234 Julie Johnson

AA235 Fred Hunter

AB670 John Smith

BD309 Alan Jordan

Customer File - Canada

CUSTNO CUSTNAME

1001 John Smith

1002 Mary Jones

1003 Chris Anderson

1004 David Perry

Customer File - US

Issues with Operational Data

 Surrogate Key Concepts

A surrogate key is a key value (i.e., a dimension) that is used as a

substitute key in place of the natural key(s) of the data.

• It does not exist in the source systems (otherwise it would be a normal

key/dimension value)

• It is generated when loading the data warehouse tables.

Surrogate keys are ALWAYS numeric values

• Value is assigned to new entities (ie rows in a table) on a sequential basis

• Each new row is assigned the next available number

• No “intelligence” is used to decide the value

A table with a Surrogate key will ALWAYS have a secondary index

based on the original key of the data.

• This is used as the ‘cross-reference’ between the old key(s) and the new

surrogate key.

Surrogate Keys are generated and assigned in the ETL process

 CUSTNO CUSTNAME

1001 John Smith

1002 Mary Jones

1003 Chris Anderson

1004 David Perry

Customer File - US

CUSTNO CUSTNAME

1001 Harry Potter

1002 Jeremy Carr

1003 Penny Hayes

1004 Debbie Thornton

Customer File - Canada

CUSTOMER DIMENSION

CUST_ID CUSTNO COUNTRY CUSTNAME

1 1001 USA John Smith

2 1002 USA Mary Jones

2 1003 USA Chris Anderson

4 1004 USA David Perry

5 1001 CAN Harry Potter

6 1002 CAN Jeremy Carr

Issues with Operational Data

Secondary Index

SALES_DETAIL

TRANS_DATE

CUSTOMER_ID

PRODUCT_ID

STORE_ID

QUANTITY_SOLD

UNIT_PRICE

DISCOUNT

NET PRICE

SALE_VALUE

MARGIN

CUSTOMERS

CUSTOMER_ID

CUSTOMER_NAME

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

EMAIL

CUST_TYPE

CUST_GROUP

PRODUCTS

PRODUCT_ID

PROD_DESCRIPTION

PROD_UOM

WEIGHT

SUPPLIER_ID

BRAND

UNIT_COST

SELL_PRICE

DISCOUNT_CODE

LEAD_TIME

TIME

CALENDAR_DATE

YEAR_NUMBER

QTR_NUMBER

MONTH_NUMBER

DAY_NUMBER

DAY_OF_WEEK_NUMBER

DAY_OF_YEAR_NUMBER

MONTH_NAME

DAY_NAME

Dimensional Modeling

STORE

STORE_ID

STORE_NAME

MANAGER_ID

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

REGION

Joins are based on

the Surrogate keys

Challenge

 Changing attributes

100 Acme Flooring Small Retailer Jenny Brown

100 Acme Flooring Major Retailer Rob McAdam

100 Acme Flooring Major Retailer Jenny Brown

2011

2013

2014

 2011 Report Same report, re-run in 2014

 2011 Sales by Sales Rep/Customer Group

Acme Flooring 250,000

Regal Rugs 150,000

Total Small Retailer 400,000

Carpet Warehouse 2,500,000

Hardwood Hank 2,100,000

Total Major Retailer 4,600,000

Total Jenny Brown 5,000,000

Issues with Operational Data

2011 Sales by Sales Rep/Customer Group

Regal Rugs 150,000

Total Small Retailer

 150,000

Carpet Warehouse 2,500,000

Hardwood Hank 2,100,000

Total Major Retailer 4,600,000

Total Jenny Brown 4,750,000

 Slowly Changing Dimensions

The Slowly Changing Dimension (SCD) concept provides for

tracking of historical changes to important attributes of an

entity, such as a Customer.

 Slowly Changing Dimensions

There are three types of Slowly Changing Dimensions:

1. A change to an attribute, which is defined as Type 1, requires that the value is

simply updated with the new value in the existing record. This is the default

behavior where updates occur to an entity. Attributes that are not used for

grouping or reporting (e.g. Telephone Number) can safely be implemented as

Type 1.

2. A change to an attribute, which is defined as Type 2, requires that a new

record for the entity be created, using a new surrogate key value. The old

record retains the previous values, and the new record includes the current

values.

3. Type 3 dimensions are less commonly used. In this case, the record includes a

'previous value' column for the attribute. When the attribute changes, the old

attribute value is moved to the 'previous' column, and the new value takes its

place. Therefore only the current and the most recent previous value are

available (in the same record).

 Slowly Changing Dimensions

There are three types of Slowly Changing Dimensions:

1. A change to an attribute, which is defined as Type 1, requires that the value is

simply updated with the new value in the existing record. This is the default

behavior where updates occur to an entity. Attributes that are not used for

grouping or reporting (e.g. Telephone Number) can safely be implemented as

Type 1.

2. A change to an attribute, which is defined as Type 2, requires that a new

record for the entity be created, using a new surrogate key value. The old

record retains the previous values, and the new record includes the current

values.

3. Type 3 dimensions are less commonly used. In this case, the record includes a

'previous value' column for the attribute. When the attribute changes, the old

attribute value is moved to the 'previous' column, and the new value takes its

place. Therefore only the current and the most recent previous value are

available (in the same record).

 Slowly Changing Dimensions

Design requirements necessary to enable Type II SCD:

1. The dimension table must use a surrogate key. This is because there

will (eventually) be several rows for the same entity, and each must

have its own unique identifier.

2. As with all surrogate key tables, there must be a secondary index that

includes the natural key(s) of the entity. However, this secondary index

must also include an Effective To Date column. This indicates the

date range for which this instance of the entity is applicable.

3. The current row for the entity must be identifiable. This will have a

future (unknown) Effective to Date.

This following example shows how a Customers Table might look, when

tracking Sales Region as a Slowly Changing Dimension.

In this example, the Sales Region for Acme Tools changed on April 20,

2011.

CUSTOMER_ID OLD_CUSNO CUST_NAME SALES_REGION EFF_TO_DATE

11003 406060 Acme Tools NORTH 2011-04-20

12104 523043 Johnson Controls EAST 2012-05-17

16563 650555 Bilson Construction SOUTH 9999-12-31

19369 406060 Acme Tools WEST 9999-12-31

22531 532043 Johnson Controls WEST 9999-12-31

 Slowly Changing Dimensions

Surrogate

Key

Original

Customer #

Defines the date range for which

this row is active. The current row

has an unknown future date

(9999-12-31)

 Slowly Changing Dimensions

ETL - Loading the Dimension Table (e.g. CUSTOMER)

• Determine if new or existing customer

• If New Customer

• Get next surrogate key

• Set Effective-to-Date to 9999-12-31

• Insert row

• If Existing Customer

• Get current Dimension Table row (by original customer number and 9999-

12-31 date) and compare all type II SCD

• If changed, get next surrogate key and insert new row with current

customer attributes and 9999-12-31 date

• Update the ‘old’ current row, changing the effective-to-date to today

• If unchanged, update the existing row (maybe telephone number has

changed)

 Slowly Changing Dimensions

ETL - Loading the Fact Table

• When loading Transactions into the Fact Table we need to associate the

Transaction with the row for the entity that was current at the time of the

transaction.

• A look-up is performed on the Dimension Table, using the original key and the

transaction date, to retrieve the surrogate key for that row
• Remember we have a secondary index over the table that uses these values

• If using RPG the lookup would look like this

 C CUSKEY KLIST

 C KFLD CUSNO

 C KFLD TRANDATE

 * Position using full key of index 2

 C CUSKEY SETLL CUST_02

 * Read using Customer number only

 C CUSNO READE CUST_02

 * We now have the row effective as at TRANDATE

• Include the retrieved surrogate key in the Fact table row

 Slowly Changing Dimensions

Fact Table

Dimension Table

CUSTOMER_ID OLD_CUSNO CUST_NAME SALES_REGION EFF_TO_DATE

11003 406060 Acme Tools NORTH 2011-04-20

12104 523043 Johnson Controls EAST 2012-05-17

16563 650555 Bilson Construction SOUTH 9999-12-31

19369 406060 Acme Tools WEST 9999-12-31

22531 532043 Johnson Controls WEST 9999-12-31

TRAN_DATE CUSTOMER_ID ITEM_ID QUANTITY PRICE

2010-02-19 11003 2039495 3 987.55

2011-03-29 11003 3404904 12 1,230.00

2012-01-17 19369 4093932 1 120.00

2013-09-02 19369 2049383 5 250.00

A common example: Event Tracking

PRODUCT_FAILURE

FAIL_DATE

PRODUCT_ID

MANUF_FACILITY_ID

FAIL_REASON_CODE

MANUF_FACILITY

FACILITY_ID

FALILITY_NAME

ADDRESS_LINE_1

ADDRESS_LINE_2

CITY

STATE

POSTCODE

TELEPHONE

EMAIL

PRODUCTS

PRODUCT_ID

PROD_DESCRIPTION

PROD_UOM

WEIGHT

BRAND

UNIT_COST

SELL_PRICE

TIME

CALENDAR_DATE

YEAR_NUMBER

QTR_NUMBER

MONTH_NUMBER

DAY_NUMBER

DAY_OF_WEEK_NUMBER

DAY_OF_YEAR_NUMBER

MONTH_NAME

DAY_NAME

Factless Fact Tables

FAIL_REASON

REASON_CODE_ID

REASON_DESCRIPTION

FAIL_TYPE

PRIMARY_CAUSE

SEC_CAUSE

The implied ‘fact’ is

that ONE failure

occurred

Dimensional Data Warehouse

Dimensional Data Warehouse

Highest Summary Level

Summary Lvl

Summary Lvl

Summary Lvl

Detail Lvl

Drill Down automatically

selects the applicable fact

table/star schema

Summary Lvl

Dimensional Data Warehouse

Summary Lvl

Summary Lvl

Summary Lvl

Summary Lvl
The path can diverge, if a

different drill down route

is selected by the user
Detail Lvl

Highest Summary Level

Dimensional Data Warehouse

Different dashboard

components are driven

by the ideal data set

Detail Lvl

